Unit 9: Inter-Annotator Agreement Statistics for Linguists with R – A SIGIL Course

Designed by Stefan Evert¹ and Marco Baroni²

¹Computational Corpus Linguistics Group Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

> ²Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

Outline

Reliability & agreement

Introduction Observed vs. chance agreement

The Kappa coefficient

Contingency tables Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures Kappa as a sample statistic

Outlook

SIGIL (Evert & Baroni)

Extensions of Kappa Final remarks

SIGIL (Evert & Baroni)

ement sigil.r-forge.r-project.org

Reliability & agreement Introduction

Outline

Reliability & agreement

Introduction

Observed vs. chance agreement

The Kappa coefficient

Contingency tables Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures Kappa as a sample statistic

Outlook

Extensions of Kappa Final remarks

Reliability & agreement Introduction

9. Inter-annotator agreement

Introduction

Manually annotated data will be used for

- 1. Linguistic analysis
 - Which factors determine a certain choice or interpretation?
 - Are there syntactic correlates of the container-content relation?

2. Machine learning (ML)

- Automatic semantic annotation, e.g. for text mining
- Extend WordNet with new entries & relations
- Online semantic analysis in NLP pipeline (e.g. dialogue system)

Crucial issue: Are the annotations correct?

- $\ensuremath{\,^{\scriptsize \hbox{\scriptsize ws}}}$ ML learns to make same mistakes as human annotator
- Inconclusive & misleading results from linguistic analysis

1/42

sigil.r-forge.r-project.org

2/42

Validity vs. reliability

(terminology from Artstein & Poesio 2008)

- We are interested in the **validity** of the manual annotation
 - i.e. whether the annotated categories are correct
- But there is no "ground truth"
 - Linguistic categories are determined by human judgement
 - Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human coders¹ consistently make same decisions
 - Assumption: high reliability implies validity
- ► How can reliability be determined?

¹The terms "annotator" and "coder" are used interchangeably in this talk. SIGIL (Evert & Baroni) sigil.r-forge.r-project.org 5/42

Reliability & agreement Introduction

Easy & hard tasks

(Brants 2000 for German POS/syntax, Véronis 1998 for WSD)

Objective tasks

- Decision rules, linguistic tests
- Annotation guidelines with discussion of boundary cases
- ► POS tagging, syntactic annotation, segmentation, phonetic transcription, ...
- \blacktriangleright IAA = 98.5% (POS tagging) IAA \approx 93.0% (syntax)

Subjective tasks

- Based on speaker intuitions
- Short annotation instructions
- Lexical semantics (subjective interpretation!), discourse annotation & pragmatics, subjectivity analysis, ...
- → IAA = $\frac{48}{70}$ = 68.6% (HW) IAA $\approx 70\%$ (word senses)

[NB: error rates around 5% are considered acceptable for most purposes]

7/42

Inter-annotator agreement

Multiple coders annotate same data (with same guidelines)

Introduction

Calculate Inter-annotator agreement (IAA)

Reliability & agreement

Sentence	A	В	agree?
Put tea in a heat-resistant jug and add the boiling water.	yes	yes	1
Where are the batteries kept in a phone?	no	yes	X
Vinegar's usefulness doesn't stop inside the house.	no	no	 ✓
How do I recognize a room that contains radioactive materials?	yes	yes	1
A letterbox is a plastic, screw-top bottle that con- tains a small notebook and a unique rubber stamp.	yes	no	×


Observed agreement between A and B is 60%

Reliability & agreement Introduction

Is 70% agreement good enough?

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org 6/42

itline	Thought experiment 1
Reliability & agreement Introduction Observed vs. chance agreement	Assume that A and B are lazy annotators, so they just marked sentences randomly as "yes" and "no" [or they enjoyed too much sun & Bordeaux wine yesterday]
The Kappa coefficient Contingency tables Chance agreement & Kappa	 How much agreement would you expect? Annotator decisions are like coin tosses: 25% both coders randomly choose "yes" (= 0.5 · 0.5)
Statistical inference for Kappa Random variation of agreement measures Kappa as a sample statistic	25%both coders randomly choose "no" (= $0.5 \cdot 0.5$)50%agreement purely by chance
Outlook Extensions of Kappa Final remarks	→ IAA = 70% is only mildly better than chance agreement
Reliability & agreement Observed vs. chance agreement	Reliability & agreement Observed vs. chance agreement
	Thought experiment 2
	 Assume A and B are lazy coders with a proactive approach They believe that their task is to find as many examples of container-content pairs as possible to make us happy
But 90% agreement is certainly a good result?	 So they mark 95% of sentences with "yes" But individual choices are still random How much agreement would you expect now?
5 , 5	 But individual choices are still random

 \blacktriangleright IAA = 90% might be no more than chance agreement

Reliability & agreement Observed vs. chance agreement

Reliability & agreement Observed vs. chance agreement

Measuring inter-annotator agreement (notation follows Artstein & Poesio 2008)

Agreement measures must be corrected for **chance agreement**! (for computational linguistics: Carletta 1996)

Notation: A_o ... observed (or "percentage") agreement A_e ... expected agreement by chance

General form of chance-corrected agreement measure *R*:

$$R = \frac{A_o - A_e}{1 - A_e}$$

 $R=0=\frac{A_e-A_e}{1-A_e}$

Measuring inter-annotator agreement

Some general properties of R:

- Perfect agreement: $R = 1 = \frac{1 A_e}{1 A_e}$
- Chance agreement:
- Perfect disagreement: $R = \frac{-A_e}{1 A_e}$

Various agreement measures depending on precise definition of A_e :

- ▶ R = S for random coin tosses (Bennett *et al.* 1954)
- $R = \pi$ for shared category distribution (Scott 1955)
- $R = \kappa$ for individual category distributions (Cohen 1960)

SIGIL (Evert & Baroni)	9. Inter-annotator agreement	sigil.r-forge.r-project.org	13 / 42

Kappa Contingency tables

Outline

Reliability & agreement

Introduction Observed vs. chance agreement

The Kappa coefficient

Contingency tables Chance agreement & Kappa

Random variation of agreement me

Kappa as a sample statistic

Outlook

Extensions of Kappa Final remarks

Kappa Contingency tables

Contingency tables for annotator agreement

codor P

SIGIL (Evert & Baroni) 9. Inter-annotator agreement

	code	rв				code	erв	
coder A	yes	no			coder A	yes	no	
yes	24	8	32		yes	<i>n</i> ₁₁	<i>n</i> ₁₂	<i>n</i> ₁ .
no	14	24	38		no	<i>n</i> ₂₁	<i>n</i> ₂₂	<i>n</i> ₂ .
	38	32	70			n.1	<i>n</i> .2	N
	code	r B				code	r B	
coder A	yes	no	5		coder A	yes	no	
yes	.343	.11	4	457	yes	<i>p</i> ₁₁	<i>p</i> ₁₂	p_{1}
no	.200	.34	13 .	543	no	<i>p</i> ₂₁	<i>p</i> ₂₂	<i>p</i> ₂ .

sigil.r-forge.r-project.org

codor P

14 / 42

Contingency tables for annotator agreement

Contingency table of **proportions** $p_{ij} = \frac{n_{ij}}{N}$ coder B coder B coder A coder A yes no yes no .343 .114 .457 yes yes *p*₁₁ p_{12} p_1 no .200 .343 .543 no *p*₂₁ **p**₂₂ p₂. .457 1 .543 **p**.1 **p**.2 р

Relevant information can be read off from contingency table:

- Observed agreement $A_o = p_{11} + p_{22} = .686$
- Category distribution for coder A: $p_{i.} = p_{i1} + p_{i2}$
- Category distribution for coder B: $p_{.j} = p_{1j} + p_{2j}$

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

17 / 42

19/42

Kappa Chance agreement & Kappa

Calculating the expected chance agreement

- How often are annotators expected to agree if they make random choices according to their category distributions?
- ► Decisions of annotators are independent → multiply marginals

coder A	coder	В		coder A	coder B		
coder A	yes	no		coder A	yes	no	
yes	.248	.209 . <mark>248</mark>	.457	yes	$\begin{array}{c} p_{1.} \cdot p_{.1} \\ p_{2.} \cdot p_{.1} \end{array}$	$p_{1.} \cdot p_{.2}$	<i>p</i> ₁ .
no	.295	.248	.543	no	$p_{2.} \cdot p_{.1}$	$p_{2} \cdot p_{\cdot 2}$	p ₂ .
	.543	.457	1		<i>p</i> .1	p .2	p

Expected chance agreement:

$$A_e = p_{1.} \cdot p_{.1} + p_{2.} \cdot p_{.2} = 49.6\%$$

Outline

Reliability & agreement

Introduction Observed vs. chance agreement

The Kappa coefficient

Contingency tables Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures Kappa as a sample statistic

Outlook

SIGIL (Evert & Baroni)

Extensions of Kappa Final remarks

sigil.r-forge.r-project.org 18 / 42

Kappa Chance agreement & Kappa

Sanity check: Is it plausible to assume that annotators always flip coins?

- ► No need to make such strong assumptions
- Annotations of individual coders may well be systematic
- We only require that choices of A and B are statistically independent, i.e. no common ground for their decisions

Definition of the Kappa coefficient (Cohen 1960)

Formal definition of the Kappa coefficient:

$$A_o = p_{11} + p_{22}$$
$$A_e = p_{1.} \cdot p_{.1} + p_{2.} \cdot p_{.2}$$
$$\kappa = \frac{A_o - A_e}{1 - A_e}$$

In our example:
$$A_o = .343 + .343 = .686$$

 $A_e = .248 + .248 = .496$
 $\kappa = \frac{.686 - .496}{1 - .496} = 0.376 !!$

Other agreement measures (Scott 1955; Bennett *et al.* 1954)

- 1. π estimates a common category distribution \bar{p}_i
 - goal is to measure chance agreement between arbitrary coders, while κ focuses on a specific pair of coders

$$egin{aligned} & A_e = (ar{p}_1)^2 + (ar{p}_2)^2 \ & ar{p}_i = rac{1}{2}(p_{i\cdot} + p_{\cdot\,i}) \end{aligned}$$

2. S assumes that coders actually flip coins ...

Statistical inference

• i.e. equiprobable category distribution
$$\bar{p}_1 = \bar{p}_2 = \frac{1}{2}$$

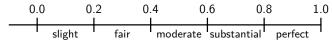
$$A_e = \frac{1}{2}$$

Much controversy whether π or κ is the more appropriate measure, but in practice they often lead to similar agreement values!

Random variation of agreement measures

Kappa Chance agreement & Kappa

sigil.r-forge.r-project.org


21 / 42

23/42

Scales for the interpretation of Kappa

► Landis & Koch (1977)

SIGIL (Evert & Baroni)

► Krippendorff (1980)

► Green (1997)

and many other suggestions ...

Outline

Reliability & agreement

SIGIL (Evert & Baroni)

Introduction Observed vs. chance agreement

The Kappa coefficient

Contingency tables Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures Kappa as a sample statistic

Outlook

Extensions of Kappa Final remarks sigil.r-forge.r-project.org 22 / 42

Kappa as a sample statistic

An example from Di Eugenio & Glass (2004)

coder A	code	er B		coder A	coder	В	
coder A	yes	no		coder A	yes	no	
yes	70 0	25	95	yes	.467	.167	.633
no	0	55	55	no	.000	.167 . <mark>367</mark>	.367
	70	80	150		.467	.533	1

- Cohen (1960): $A_o = .833$, $A_e = .491$, $\kappa = .672$
- Scott (1955): $A_o = .833$, $A_e = .505$, $\pi = .663$
- Krippendorff (1980): data show tentative agreement according to κ , but should be discarded according to π

9. Inter-annotator agreement

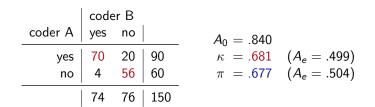
☞ What do you think?

SIGIL (Evert & Baroni)

More	samples	from	the	same	annotators	
------	---------	------	-----	------	------------	--

coder A	code	er B			
coder A	yes	no		$A_0 = .827$	
yes	67 2	24	91	$\kappa = .659$	$(A_e = .491)$
no	2	57	59	$\pi = .652$	$(A_e = .502)$
	69	81	150		

SIGIL (Evert & Baroni)


sigil.r-forge.r-project.org 27 / 42

Statistical inference Random variation of agreement measures

sigil.r-forge.r-project.org

25 / 42

More samples from the same annotators

We are not interested in a particular sample, but rather want to know how often coders agree in general (for this task).

 \blacktriangleright Sampling variation of κ

[NB: A_e is *expected* chance agreement, not value in specific sample]

Outline

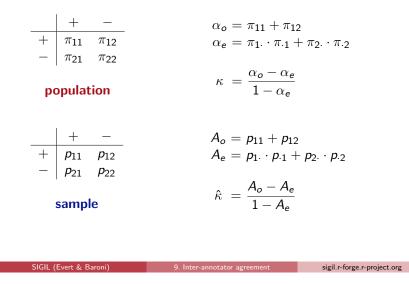
Reliability & agreement

Introduction Observed vs. chance agreement

The Kappa coefficien

Contingency tables Chance agreement & Kappa

Statistical inference for Kappa


Random variation of agreement measures Kappa as a sample statistic

Statistical inference

Outlook

Extensions of Kappa Final remarks

28/42

Sampling variation of $\hat{\kappa}$

(Fleiss et al. 1969; Krenn et al. 2004)

- Standard approach: show (or hope) that κ̂ approximately follows Gaussian distribution if samples are large enough
- Show (or hope) that $\hat{\kappa}$ is unbiased estimator: $E[\hat{\kappa}] = \kappa$
- Compute standard deviation of $\hat{\kappa}$ (Fleiss *et al.* 1969: 325):

$$(\hat{\sigma}_{\hat{\kappa}})^{2} = \frac{1}{N \cdot (1 - A_{e})^{4}} \cdot \left(\sum_{i=1}^{2} p_{ii} \left[(1 - A_{e}) - (p_{\cdot i} + p_{i \cdot})(1 - A_{o}) \right]^{2} + (1 - A_{o})^{2} \sum_{i \neq j} p_{ij} (p_{\cdot i} + p_{j \cdot})^{2} - (A_{o}A_{e} - 2A_{e} + A_{o})^{2} \right)^{2}$$

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org 31 / 42

Statistical inference Kappa as a sample statistic

Sampling variation of $\hat{\kappa}$ (Lee & Tu 1994; Boleda & Evert unfinished)

► Asymptotic 95% confidence interval:

 $\kappa \in [\hat{\kappa} - 1.96 \cdot \hat{\sigma}_{\hat{\kappa}}, \ \hat{\kappa} + 1.96 \cdot \hat{\sigma}_{\hat{\kappa}}]$

▶ For the example from Di Eugenio & Glass (2004), we have

 $\kappa \in [0.562, 0.783]$ with $\hat{\sigma}_{\hat{\kappa}} = .056$

- ➡ comparison with threshold .067 is pointless!
- ▶ How accurate is the Gaussian approximation?
 - Simulation experiments indicate biased $\hat{\kappa}$, underestimation of $\hat{\sigma}_{\hat{\kappa}}$ and non-Gaussian distribution for skewed marginals
 - Confidence intervals are reasonable for larger samples
- ▶ Recent work on improved estimates (e.g. Lee & Tu 1994)

32 / 42

30 / 42

Outlook Extensions of Kappa

Outline

Reliability & agreement

Introduction Observed vs. chance agreement

The Kappa coefficient

Contingency tables Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures Kappa as a sample statistic

Outlook

Extensions of Kappa Final remarks

Extensions of Kappa: Multiple categories

- Straightforward extension to C > 2 categories
 - \rightarrow *C* × *C* contingency table of proportions *p*_{ij}
- Observed agreement: $A_o = \sum_{i=1}^{C} p_{ii}$
- Expected agreement: $A_e = \sum_{i=1}^{C} p_{i.} \cdot p_{.i}$
- $\blacktriangleright \text{ Kappa: } \hat{\kappa} = \frac{A_o A_e}{1 A_e}$

SIGIL (Evert & Baroni)

- Equation for $\hat{\sigma}_{\hat{\kappa}}$ also extends to *C* categories

Extensions of Kappa: Weighted Kappa

- ► For multiple categories, some disagreements may be more "serious" than others → assign greater weight
- ▶ E.g. German PP-verb combinations (Krenn *et al.* 2004)
 - 1. figurative expressions (collocational)
 - 2. support-verb constructions (collocational)
 - 3. free combinations (non-collocational)
- **•** Rewrite $\hat{\kappa}$ in terms of expected/observed **disagreement**

$$\hat{\kappa} = \frac{(1 - D_o) - (1 - D_e)}{1 - (1 - D_e)} = 1 - \frac{D_o}{D_e}$$
$$D_o = 1 - A_o = \sum_{i \neq j} p_{ij} \rightsquigarrow \sum_{i \neq j} w_{ij} p_{ij}$$
$$D_e = 1 - A_e = \sum_{i \neq j} p_{i\cdot} \cdot p_{\cdot j} \rightsquigarrow \sum_{i \neq j} w_{ij} (p_{i\cdot} \cdot p_{\cdot j})$$

Evert & Baroni)	SIGIL
-----------------	-------

sigil.r-forge.r-project.org 35 / 42

Outlook Extensions of Kappa

sigil.r-forge.r-project.org

34/42

36 / 42

Extensions of Kappa: Multiple annotators (Krenn *et al.* 2004)

 Naive strategy: compare each annotator against selected "expert", or consensus annotation after reconciliation phase

BK	kappa	homog	geneity	interval
vs. NN	value	min	max	size
7	.775	71.93%	82.22%	10.29
9	.747	68.65%	79.77%	11.12
10	.700	64.36%	75.85%	11.49
4	.696	64.09%	75.91%	11.82
1	.692	63.39%	75.91%	12.52
6	.671	61.05%	73.33%	12.28
5	.669	60.12%	72.75%	12.63
2	.639	56.14%	70.64%	14.50
11	.592	52.40%	65.65%	13.25
3	.520	51.70%	64.33%	12.63
8	.341	33.68%	49.71%	16.03
12	.265	17.00%	35.05%	18.05

Outlook Extensions of Kappa

Extensions of Kappa: Multiple annotators

- Better approach: compute κ̂ for each possible pair of annotators, then report average and standard deviation
- Extensions of agreement coefficients to multiple annotators are mathematical implementations of this basic idea (see Artstein & Poesio 2008 for details)
- If sufficiently many coders (= test subjects) are available, annotation can be analysed as psycholinguistic experiment
 - ANOVA, logistic regression, generalised linear models
 - ► correlations between annotators → systematic disagreement

Outlook Final remarks

Outline

The Kappa coefficient

Chance agreement & Kappa

Statistical inference for Kappa

Kappa as a sample statistic

Outlook

Extensions of Kappa Final remarks

Outlook Final remarks

Different types of non-reliability

- 1. Random errors (slips)
 - Lead to chance agreement between annotators

2. Different intuitions

- Systematic disagreement
- 3. Misinterpretation of tagging guidelines
 - ► May not result in disagreement → not detected

SIGIL (Evert & Baroni) 9. Inter-annotator agreement sigil.r-forge.r-project.org 38 / 42	SIGIL (Evert & Baroni) 9. Inter-annotator agreement sigil.r-forge.r-project.org 39				
Outlook Final remarks	Outlook Final remarks				
uggested reading & materials	References I				
	 Artstein, Ron and Poesio, Massimo (2008). Survey article: Inter-coder agreement for computational linguistics. <i>Computational Linguistics</i>, 34(4), 555–596. Bennett, E. M.; Alpert, R.; Goldstein, A. C. (1954). Communications through limited questioning. <i>Public Opinion Quarterly</i>, 18(3), 303–308. 				
Artstein & Poesio (2008) Everyone should at least read this article.	 Brants, Thorsten (2000). Inter-annotator agreement for a German newspaper corpus. In Proceedings of the Second International Conference on Language Resources and Evaluation (LREC 2000), Athens, Greece. Carletta, Jean (1996). Assessing agreement on classification tasks: the kappa statistic 				
R package irr (inter-rater reliability)	 Computational Linguistics, 22(2), 249–254. Cohen, Jacob (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. Di Eugenio, Barbara and Glass, Michael (2004). The kappa statistic: A second look. Computational Linguistics, 30(1), 95–101. 				
Lacks confidence intervals → to be included in corpora package.	 Fleiss, Joseph L.; Cohen, Jacob; Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. <i>Psychological Bulletin</i>, 72(5), 323–327. Green, Annette M. (1997). Kappa statistics for multiple raters using categorical classifications. In <i>Proceedings of the Twenty-Second Annual SAS Users Group International Conference (online)</i>, San Diego, CA. 				

Final remarks Outlook

References II

Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder agreement for a collocation identification task. In Proceedings of KONVENS 2004, pages 89–96, Vienna, Austria.

- Krippendorff, Klaus (1980). Content Analysis: An Introduction to Its Methodology. Sage Publications, Beverly Hills, CA.
- Landis, J. Richard and Koch, Gary G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174.
- Lee, J. Jack and Tu, Z. Nora (1994). A better confidence interval for kappa (κ) on measuring agreement between two raters with binary outcomes. Journal of Computational and Graphical Statistics, 3(3), 301-321.
- Scott, William A. (1955). Reliability of content analysis: The case of nominal scale coding. Public Opinion Quarterly, 19(3), 321-325.
- Véronis, Jean (1998). A study of polysemy judgements and inter-annotator agreement. In Proceedings of SENSEVAL-1, Herstmonceux Castle, Sussex, UK.

SIGIL (Evert & Baroni) 9. Inter-annotator agreement

sigil.r-forge.r-project.org 42/42