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Inferential statistics Preliminaries

Inferential statistics for continuous data

I Goal: infer (characteristics of) population distribution from
small random sample, or test hypotheses about population

I problem: overwhelmingly infinite coice of possible distributions
I can estimate/test characteristics such as mean µ and s.d. σ
I but H0 doesn’t determine a unique sampling distribution then

+ parametric model, where the population distribution of a r.v.
X is completely determined by a small set of parameters

I In this session, we assume a Gaussian population distribution
I estimate/test parameters µ and σ of this distribution
I sometimes a scale transformation is necessary (e.g. lognormal)

I Nonparametric tests need fewer assumptions, but . . .
I cannot test hypotheses about µ and σ

(instead: median m, IQR = inter-quartile range, etc.)
I more complicated and computationally expensive procedures
I correct interpretation of results often difficult
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Inferential statistics Preliminaries

Inferential statistics for continuous data

Rationale similar to binomial test for frequency data: measure
observed statistic T in sample, which is compared against its
expected value E0[T ] Ü if difference is large enough, reject H0

I Question 1: What is a suitable statistic?
I depends on null hypothesis H0
I large difference T − E0[T ] should provide evidence against H0
I e.g. unbiased estimator for population parameter to be tested

I Question 2: what is “large enough”?
I reject if difference is unlikely to arise by chance
I need to compute sampling distribution of T under H0
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Inferential statistics Preliminaries

Inferential statistics for continuous data

I Easy if statistic T has a Gaussian distribution T ∼ N(µ, σ2)
I µ and σ2 are determined by null hypothesis H0
I reject H0 at two-sided significance level α = .05

if T < µ− 1.96σ or T > µ+ 1.96σ

I This suggests a standardized
z-score as a measure of
extremeness:

Z :=
T − µ
σ

I Central range of sampling
variation: |Z | ≤ 1.96

t

g(
t)

µ

σσ

2σ2σ
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Inferential statistics Preliminaries

Notation for random samples

I Random sample of n� m = |Ω| items
I e.g. participants of survey, Wikipedia sample, . . .
I recall importance of completely random selection

I Sample described by observed values of r.v. X ,Y ,Z , . . .:

x1, . . . , xn; y1, . . . , yn; z1, . . . , zn

+ specific items ω1, . . . , ωn are irrelevant, we are only interested
in their properties xi = X (ωi ), yi = Y (ωi ), etc.

I Mathematically, xi , yi , zi are realisations of random variables

X1, . . . ,Xn; Y1, . . . ,Yn; Z1, . . . ,Zn

I X1, . . . ,Xn are independent from each other and each one has
the same distribution Xi ∼ X Ü i.i.d. random variables

+ each random experiment now yields complete sample of size n
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One-sample tests Testing the mean

A simple test for the mean

I Consider simplest possible H0: a point hypothesis

H0 : µ = µ0, σ = σ0

+ together with normality assumption, population distribution is
completely determined

I How would you test whether µ = µ0 is correct?

I An intuitive test statistic is the sample mean

x̄ =
1
n

n∑
i=1

xi with x̄ ≈ µ0 under H0

I Reject H0 if difference x̄ − µ0 is sufficiently large
+ need to work out sampling distribution of X̄
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One-sample tests Testing the mean

The sampling distribution of X̄

I The sample mean is also a random variable:

X̄ =
1
n

(
X1 + · · ·+ Xn

)
I X̄ is a sensible test statistic for µ because it is unbiased:

E[X̄ ] = E

[
1
n

n∑
i=1

Xi

]
=

1
n

n∑
i=1

E[Xi ] =
1
n

n∑
i=1

µ = µ

I An important property of the Gaussian distribution: if
X ∼ N(µ1, σ

2
1) and Y ∼ N(µ2, σ

2
2) are independent, then

X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2)

r · X ∼ N(rµ1, r
2σ2

1) for r ∈ R
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One-sample tests Testing the mean

The sampling distribution of X̄

I Since X1, . . . ,Xn are i.i.d. with Xi ∼ N(µ, σ2), we have

X1 + · · ·+ Xn ∼ N(nµ, nσ2)

X̄ =
1
n

(
X1 + · · ·+ Xn

)
∼ N(µ,

σ2

n
)

I X̄ has Gaussian distribution with same mean µ but smaller s.d.
than the original r.v. X : σX̄ = σ/

√
n

+ explains why normality assumptions are so convenient
+ larger samples allow more reliable hypothesis tests about µ

I If the sample size n is large enough, σX̄ = σ/
√
n→ 0

and the sample mean x̄ becomes an accurate estimate of the
true population value µ (law of large numbers)

SIGIL (Baroni & Evert) 3b. Continuous Data: Inference sigil.r-forge.r-project.org 11 / 33



One-sample tests Testing the mean

The sampling distribution of X̄

I Since X1, . . . ,Xn are i.i.d. with Xi ∼ N(µ, σ2), we have

X1 + · · ·+ Xn ∼ N(nµ, nσ2)

X̄ =
1
n

(
X1 + · · ·+ Xn

)
∼ N(µ,

σ2

n
)

I X̄ has Gaussian distribution with same mean µ but smaller s.d.
than the original r.v. X : σX̄ = σ/

√
n

+ explains why normality assumptions are so convenient
+ larger samples allow more reliable hypothesis tests about µ

I If the sample size n is large enough, σX̄ = σ/
√
n→ 0

and the sample mean x̄ becomes an accurate estimate of the
true population value µ (law of large numbers)

SIGIL (Baroni & Evert) 3b. Continuous Data: Inference sigil.r-forge.r-project.org 11 / 33



One-sample tests Testing the mean

The z test

I Now we can quantify the extremeness of the observed value x̄ ,
given the null hypothesis H0 : µ = µ0, σ = σ0

z =
x̄ − µ0

σX̄
=

x̄ − µ0

σ0/
√
n

I Corresponding r.v. Z has a standard normal distribution if H0
is correct: Z ∼ N(0, 1)

I We can reject H0 at significance level α if

α = .05 .01 .001
|z | > 1.960 2.576 3.291 -qnorm(α/2)

I Two problems of this approach:
1. need to make hypothesis about σ in order to test µ = µ0
2. H0 might be rejected because of σ � σ0 even if µ = µ0 is true
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One-sample tests Testing the variance
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One-sample tests Testing the variance

A test for the variance

I An intuitive test statistic for σ2 is the error sum of squares

V = (X1 − µ)2 + · · ·+ (Xn − µ)2

I Squared error (X − µ)2 is σ2 on average Ü E[V ] = nσ2

I reject σ = σ0 if V � nσ2
0 (variance larger than expected)

I reject σ = σ0 if V � nσ2
0 (variance smaller than expected)

+ sampling distribution of V shows if difference is large enough

I Rewrite V in the following way:

V = σ2

[(
X1 − µ
σ

)2

+ · · ·+
(
Xn − µ
σ

)2
]

= σ2(Z 2
1 + · · ·+ Z 2

n )

with Zi ∼ N(0, 1) i.i.d. standard normal variables
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One-sample tests Testing the variance

A test for the variance

I Note that the distribution of Z 2
1 + · · ·+ Z 2

n does not depend
on the population parameters µ and σ2 (unlike V )

I Statisticians have worked out the distribution of
∑n

i=1 Z
2
i for

i.i.d. Zi ∼ N(0, 1), known as the chi-squared distribution

n∑
i=1

Z 2
i ∼ χ2

n

with n degrees of freedom (df = n)
I The χ2

n distribution has expectation E
[∑

i Z
2
i

]
= n and

variance Var
[∑

i Z
2
i

]
= 2n Ü confirms E[V ] = nσ2
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One-sample tests Testing the variance

A test for the variance

I Under H0 : σ = σ0, we have

V

σ2
0

= Z 2
1 + · · ·+ Z 2

n ∼ χ2
n

I Appropriate rejection thresholds for the test statistic V /σ2
0 can

easily be obtained with R
I χ2

n distribution is not symmetric, so one-sided tail probabilities
are used (with α′ = α/2 for two-sided test)

I Again, there are two problems:
1. need to make hypothesis about µ in order to test σ = σ0
2. H0 easily rejected for µ 6= µ0, even though σ = σ0 may be true
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One-sample tests Testing the variance

Intermission: Distributions in R

I R can compute density functions and tail probabilities or
generate random numbers for a wide range of distributions

I Systematic naming scheme for such functions:
dnorm() density function of Gaussian (normal) distribution
pnorm() tail probability
qnorm() quantile = inverse tail probability
rnorm() generate random numbers

I Available distributions include Gaussian (norm), chi-squared
(chisq), t (t), F (f), binomial (binom), Poisson (pois), . . .

+ you will encounter many of them later in the course

I Each function accepts distribution-specific parameters
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One-sample tests Testing the variance

Intermission: Distributions in R

> x <- rnorm(50, mean=100, sd=15) # random sample of 50 IQ scores
> hist(x, freq=FALSE, breaks=seq(45,155,10)) # histogram

> xG <- seq(45, 155, 1) # theoretical density in steps of 1 IQ point
> yG <- dnorm(xG, mean=100, sd=15)
> lines(xG, yG, col="blue", lwd=2)

# What is the probability of an IQ score above 150?
# (we need to compute an upper tail probability to answer this question)
> pnorm(150, mean=100, sd=15, lower.tail=FALSE)

# What does it mean to be among the bottom 25% of the population?
> qnorm(.25, mean=100, sd=15) # inverse tail probability
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One-sample tests Testing the variance

Intermission: Distributions in R

# Now do the same for a chi-squared distribution with 5 degrees of freedom
# (hint: the parameter you’re looking for is df=5)

> xC <- seq(0, 10, .1)
> yC <- dchisq(xC, df=5)
> plot(xC, yC, type="l", col="blue", lwd=2)

# tail probability for
∑

i Z
2
i ≥ 10

> pchisq(10, df=5, lower.tail=FALSE)

#What is the appropriate rejection criterion for a variance test with α = 0.05?
> qchisq(.025, df=5, lower.tail=FALSE) # two-sided: V / σ2

0 > n

> qchisq(.025, df=5, lower.tail=TRUE) # two-sided: V / σ2
0 < n
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One-sample tests Testing the variance

The sample variance

I Idea: replace true µ by sample value X̄ (which is a r.v.!)

V ′ = (X1 − X̄ )2 + · · ·+ (Xn − X̄ )2

I But there are two problems:
+ Xi − X̄ ∼ N(0, σ2) not guaranteed because X̄ 6= µ
+ terms are no longer i.i.d. because X̄ depends on all Xi
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One-sample tests Testing the variance

The sample variance

I We can easily work out the distribution of V ′ for n = 2:

V ′ = (X1 − X̄ )2 + (X2 − X̄ )2

= (X1 − X1+X2
2 )2 + (X2 − X1+X2

2 )2

= (X1−X2
2 )2 + (X2−X1

2 )2 =
1
2

(X1 − X2)2

where X1 − X2 ∼ N(0, 2σ2) for i.i.d. X1,X2 ∼ N(µ, σ2)

I Can also show that V ′ and X̄ are independent
I follows from independence of X1 − X2 and X1 + X2
I this is only the case for independent Gaussian variables

(Geary 1936, p. 178)
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One-sample tests Testing the variance

The sample variance

I We now have

V ′ = σ2
(
X1 − X2

σ
√
2

)2

= σ2Z 2

with Z 2 ∼ χ2
1 because of X1 − X2 ∼ N(0, 2σ2)

I For n > 2 it can be shown that

V ′ =
n∑

i=1

(Xi − X̄ )2 = σ2
n−1∑
j=1

Z 2
j

with
∑

j Z
2
j ∼ χ2

n−1 independent from X̄
I proof based on multivariate Gaussian and vector algebra
I notice that we “lose” one degree of freedom because one

parameter (µ ≈ x̄) has been estimated from the sample
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One-sample tests Testing the variance

Sample variance and the chi-squared test

I This motivates the following definition of sample variance S2

S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2

with sampling distribution (n − 1)S2/σ2 ∼ χ2
n−1

I S2 is an unbiased estimator of variance: E[S2] = σ2

I We can use S2 to test H0 : σ = σ0 without making any
assumptions about the true mean µ Ü chi-squared test

I Remarks
I sample variance ( 1

n−1 ) vs. population variance ( 1
m )

I χ2 distribution doesn’t have parameters σ2 etc., so we need to
specify the distribution of S2 in a roundabout way

I independence of S2 and X̄ will play an important role later
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One-sample tests Testing the variance

Sample data for this session

# Let us take a reproducible sample from the population of Ingary
> library(SIGIL)
> Census <- simulated.census()
> Survey <- Census[1:100, ]

# We will be testing hypotheses about the distribution of body heights
> x <- Survey$height # sample data: n items
> n <- length(x)
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One-sample tests Testing the variance

Chi-squared test of variance in R

# Chi-squared test for a hypothesis about the s.d. (with unknown mean)
# H0 : σ = 12 (one-sided test against σ > σ0)
> sigma0 <- 12 # you can also use the name σ0 in a Unicode locale
> S2 <- sum((x - mean(x))^2) / (n-1) # unbiased estimator of σ2

> S2 <- var(x) # this should give exactly the same value
> X2 <- (n-1) * S2 / sigma0^2 # has χ2 distribution under H0

> pchisq(X2, df=n-1, lower.tail=FALSE)

# How do you carry out a one-sided test against σ < σ0?

# Here’s a trick for an approximate two-sided test (try e.g. with σ0 = 20)
> alt.higher <- S2 > sigma0^2
> 2 * pchisq(X2, df=n-1, lower.tail=!alt.higher)
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One-sample tests Student’s t test
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One-sample tests Student’s t test

Student’s t test for the mean

I Now we have the ingredients for a test of H0 : µ = µ0 that
does not require knowledge of the true variance σ2

I In the z-score for X̄

Z =
X̄ − µ0

σ/
√
n

replace the unknown true s.d. σ by the unbiased sample
estimate σ̂ =

√
S2, resulting in a so-called t-score:

T =
X̄ − µ0√
S2/n

I William S. Gosset worked out the precise sampling distriution
of T and published it under the pseudonym “Student”
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One-sample tests Student’s t test

Student’s t test for the mean

I Because X̄ and S2 are independent, we find that

T ∼ tn−1 under H0 : µ = µ0

Student’s t distribution with df = n − 1 degrees of freedom

I In order to carry out a one-sample t test, calculate the statistic

t =
x̄ − µ0√
s2/n

and reject H0 : µ = µ0 if |t| > C
I Rejection threshold C depends on df = n − 1 and desired

significance level α (in R: -qt(α/2, n − 1))
+ very close to z-score thresholds for n > 30
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One-sample tests Student’s t test

The mathematical magic behind Student’s t test

I Student’s t distribution characterizes the quantity

Z√
V /k

∼ tk

where Z ∼ N(0, 1) and V ∼ χ2
k are independent r.v.

I T ∼ tn−1 under H0 : µ = µ0 because the unknown population
variance σ2 cancels out between the independent r.v. X̄ and S2

T =
X̄ − µ0√
S2/n

=
X̄−µ0
σ√
S2

nσ2

=

X̄−µ0
σ/
√
n√

S2

σ2

=

X̄−µ0
σ/
√
n√

(n−1)S2

σ2
/(n − 1)

with Z = X̄−µ0
σ/
√
n
∼ N(0, 1) and V = (n−1)S2

σ2
∼ χ2

n−1
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One-sample tests Student’s t test

One-sample t test in R

# we will use the same sample x of size n as in the previous example

# Student’s t-test for a hypothesis about the mean (with unknown s.d.)
# H0 : µ = 165 cm
> mu0 <- 165
> x.bar <- mean(x) # sample mean x̄

> s2 <- var(x) # sample variance s2

> t.score <- (x.bar - mu0) / sqrt(s2 / n) # t statistic
> print(t.score) # positive indicates µ > µ0, negative µ < µ0

> -qt(0.05/2, n-1) # two-sided rejection threshold for |t| at α = .05
> 2 * pt(abs(t.score), n-1, lower=FALSE) # two-sided p-value
# Mini-task: plot density function of t distribution for different d.f.

> t.test(x, mu=165) # agrees with our ‘‘manual’’ t-test
# Note that t.test() also provides a confidence interval for the true µ!
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One-sample tests Confidence intervals
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One-sample tests Confidence intervals

Confidence intervals

I If we do not have a specific H0 to start from, estimate
confidence interval for µ or σ2 by inverting hypothesis tests

I in principle same procedure as for binomial confidence intervals
I implemented in R for t test and chi-squared test

I Confidence interval has a particularly simple form for the t test

I Given H0 : µ = a for some a ∈ R, we reject H0 if

|t| =

∣∣∣∣∣ x̄ − a√
s2/n

∣∣∣∣∣ > C

with C ≈ 2 for α = .05 and n > 30

å x̄ − C
s√
n
≤ µ ≤ x̄ + C

s√
n

+ this is the origin of the “±2 standard deviations” rule of thumb
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One-sample tests Confidence intervals

Confidence intervals

I Can you work out a similar confidence interval for σ2?
I Test hypotheses H0 : σ2 = a for different values a > 0

+ Which H0 are rejected given the observed sample variance s2?

I If H0 is true, we have the sampling distribution

Z 2 := (n − 1)S2/a ∼ χ2
n−1

I Reject H0 if Z 2 > C1 or Z 2 < C2 (not symmetric)
I Solve inequalities to obtain confidence interval

(n − 1)s2/C1 ≤ σ2 ≤ (n − 1)s2/C2
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