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Preliminaries
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(EEOIEEIRS SIS Preliminaries

Inferential statistics for continuous data

» Goal: infer (characteristics of ) population distribution from
small random sample, or test hypotheses about population
» problem: overwhelmingly infinite coice of possible distributions
» can estimate/test characteristics such as mean p and s.d. o
» but Hp doesn’t determine a unique sampling distribution then
1= parametric model, where the population distribution of a r.v.
X is completely determined by a small set of parameters
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Inferential statistics for continuous data

» Goal: infer (characteristics of ) population distribution from
small random sample, or test hypotheses about population
» problem: overwhelmingly infinite coice of possible distributions
» can estimate/test characteristics such as mean p and s.d. o
» but Hy doesn’t determine a unique sampling distribution then
1= parametric model, where the population distribution of a r.v.
X is completely determined by a small set of parameters

> In this session, we assume a Gaussian population distribution

» estimate/test parameters p and o of this distribution
» sometimes a scale transformation is necessary (e.g. lognormal)
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(EEOIEEIRS SIS Preliminaries

Inferential statistics for continuous data

» Goal: infer (characteristics of ) population distribution from
small random sample, or test hypotheses about population
» problem: overwhelmingly infinite coice of possible distributions
» can estimate/test characteristics such as mean p and s.d. o
» but Hy doesn’t determine a unique sampling distribution then
1= parametric model, where the population distribution of a r.v.
X is completely determined by a small set of parameters

» In this session, we assume a Gaussian population distribution
» estimate/test parameters p and o of this distribution
» sometimes a scale transformation is necessary (e.g. lognormal)

» Nonparametric tests need fewer assumptions, but ...
» cannot test hypotheses about 1 and o
(instead: median m, IQR = inter-quartile range, etc.)
» more complicated and computationally expensive procedures
» correct interpretation of results often difficult
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(EEOIEEIRS SIS Preliminaries

Inferential statistics for continuous data

Rationale similar to binomial test for frequency data: measure
observed statistic T in sample, which is compared against its
expected value Eg[T] = if difference is large enough, reject Hyp
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(EEOIEEIRS SIS Preliminaries

Inferential statistics for continuous data

Rationale similar to binomial test for frequency data: measure
observed statistic T in sample, which is compared against its
expected value Eo[T] = if difference is large enough, reject Hy

» Question 1: What is a suitable statistic?

» depends on null hypothesis Hy
» large difference T — Eo[T] should provide evidence against Hp
» e.g. unbiased estimator for population parameter to be tested
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(EEOIEEIRS SIS Preliminaries

Inferential statistics for continuous data

Rationale similar to binomial test for frequency data: measure
observed statistic T in sample, which is compared against its
expected value Eo[T] = if difference is large enough, reject Hy

» Question 1: What is a suitable statistic?

» depends on null hypothesis Hy
» large difference T — Eo[T] should provide evidence against Hp
» e.g. unbiased estimator for population parameter to be tested

» Question 2: what is “large enough?

» reject if difference is unlikely to arise by chance
» need to compute sampling distribution of T under Hy
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(EEOIEEIRS SIS Preliminaries

Inferential statistics for continuous data

>

» Easy if statistic T has a Gaussian distribution T ~ N(u,0?)
» 1 and o2 are determined by null hypothesis Ho

reject Ho at two-sided significance level oo = .05
if T<p—1960or T > pu+ 1.960

q(t)
)
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(EEOIEEIRS SIS Preliminaries

Inferential statistics for continuous data

» Easy if statistic T has a Gaussian distribution T ~ N(u,0?)

» u and o2 are determined by null hypothesis Ho
» reject Hp at two-sided significance level o = .05
if T<p—1960or T > pu+ 1.960

» This suggests a standardized

z-score as a measure of
extremeness:
T — <
7 = I =
o
. 20 20
» Central range of sampling .

variation: |Z| < 1.96 :
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(EEOIEEIRS SIS Preliminaries

Notation for random samples

» Random sample of n < m = |Q] items

» e.g. participants of survey, Wikipedia sample, ...
» recall importance of completely random selection

» Sample described by observed values of rv. X, Y, Z, ...
X1yeo s Xn,  Yiseeos¥Yni  Ziy-.vsZn

15 specific items wq,...,w, are irrelevant, we are only interested
in their properties x; = X(w;), yi = Y(w;), etc.
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(EEOIEEIRS SIS Preliminaries

Notation for random samples

» Random sample of n < m = |Q] items

» e.g. participants of survey, Wikipedia sample, ...
» recall importance of completely random selection

» Sample described by observed values of rv. X, Y, Z, ...
X1yeo s Xn,  Yiseeos¥Yni  Ziy-.vsZn

15 specific items wq,...,w, are irrelevant, we are only interested
in their properties x; = X(w;), yi = Y(w;), etc.

» Mathematically, x;, y;, z; are realisations of random variables
Xl,...,X,,; Yl;'--yyn; Zl,...,Zn

» Xi,..., X, are independent from each other and each one has
the same distribution X; ~ X = i.i.d. random variables

1= each random experiment now yields complete sample of size n
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Testing the mean
Outline

One-sample tests

Testing the mean
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(OLCEETNLIEREE S Testing the mean

A simple test for the mean

» Consider simplest possible Hyp: a point hypothesis
Ho: p=po, o=o0

1= together with normality assumption, population distribution is
completely determined

» How would you test whether . = pg is correct?
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(OLCEETNLIEREE S Testing the mean

A simple test for the mean

v

Consider simplest possible Hy: a point hypothesis
Ho: p=po, o=o0

1= together with normality assumption, population distribution is
completely determined

v

How would you test whether . = g is correct?

v

An intuitive test statistic is the sample mean

X == X; with X = po under Hy

v

Reject Hy if difference X — pg is sufficiently large
= need to work out sampling distribution of X
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(OLCEETNLIEREE S Testing the mean

The sampling distribution of X

» The sample mean is also a random variable:

- 1
%=L+t x)

» X is a sensible test statistic for u because it is unbiased

E[X]=E [% i X;
i=1

1 — 1 —
= ;ZE[X,'] = ;ZM=M
i=1 i=1
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Uil
The sampling distribution of X

» The sample mean is also a random variable:
. 1
X=X+ +X)

» X is a sensible test statistic for i because it is unbiased:

_ 1 — 1w 1 —
=1 i=1 i=1

» An important property of the Gaussian distribution: if
X ~ N(u1,02) and Y ~ N(p2,03) are independent, then

X+ Y ~ N(pg + pi2, 0% + 03)
r-X ~ N(rpy, r’o?)  forreR
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Uil
The sampling distribution of X

» Since X1,..., X, are i.i.d. with X; ~ N(u,?), we have

Xy + -+ Xy ~ N(np, no?)

o2

- 1
X:;(X1~|—---+Xn)~N(u,7)

» X has Gaussian distribution with same mean y but smaller s.d.

than the original r.v. X: ox =0 /y/n

1= explains why normality assumptions are so convenient
1= |arger samples allow more reliable hypothesis tests about p
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Uil
The sampling distribution of X

» Since X1,..., X, are i.i.d. with X; ~ N(u,?), we have

Xy + -+ Xy ~ N(np, no?)

o2

- 1
X:;(X1+---+Xn)~N(u,7)

» X has Gaussian distribution with same mean y but smaller s.d.

than the original r.v. X: ox =0 /y/n

1= explains why normality assumptions are so convenient
1= |arger samples allow more reliable hypothesis tests about p

» If the sample size n is large enough, o5 = o /\/n — 0

and the sample mean X becomes an accurate estimate of the
true population value p (law of large numbers)
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Testing the mean
The z test

» Now we can quantify the extremeness of the observed value X,
given the null hypothesis Hy : 1 = o, 0 = og
L, XTHo _ X~ o
Uo/\/ﬁ
» Corresponding r.v. Z has a standard normal distribution if Hy
is correct: Z ~ N(0,1)

Ix
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Testing the mean
The z test

» Now we can quantify the extremeness of the observed value X,
given the null hypothesis Hy : 1 = o, 0 = og

X~ Mo _ X~ Ho
ox oo//n

» Corresponding r.v. Z has a standard normal distribution if Hy
is correct: Z ~ N(0,1)

» We can reject Hp at significance level « if

y—

a= .05 .01 .001
|z| > 1.960 2.576 3.291 -qnorm(a/2)
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Testing the mean
The z test

» Now we can quantify the extremeness of the observed value X,
given the null hypothesis Hy : 1 = o, 0 = og

X~ Ho _ X~ Ko

ox oo//n
Corresponding r.v. Z has a standard normal distribution if Hy
is correct: Z ~ N(0,1)

We can reject Hy at significance level « if

y—

v

v

a= .05 .01 .001
|z| > 1.960 2.576 3.291 -qnorm(a/2)

v

Two problems of this approach:

1. need to make hypothesis about o in order to test u = pg
2. Hp might be rejected because of o > g even if u = pg is true
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Testing the variance
Outline

One-sample tests

Testing the variance
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(O, CEETNLIEREE S Testing the variance

A test for the variance

» An intuitive test statistic for o2 is the error sum of squares

V=Xt —p)?+ -+ (Xn — p)?

» Squared error (X — 1) is 02 on average = E[V] = no?

> reject o = og if V > nod (variance larger than expected)
> reject o = og if V < nod (variance smaller than expected)
1= sampling distribution of V shows if difference is large enough
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(O, CEETNLIEREE S Testing the variance

A test for the variance

» An intuitive test statistic for o2 is the error sum of squares

V=Xt —p)?+ -+ (Xn — p)?

2 2

» Squared error (X — p)? is o2 on average = E[V] = no

> reject o = og if V > nod (variance larger than expected)
> reject o = og if V < nod (variance smaller than expected)
1= sampling distribution of V shows if difference is large enough

» Rewrite V in the following way:

() s ()]

=0zt + Zy)

V = o2

with Z; ~ N(0,1) i.i.d. standard normal variables
sigil.r-forge.r-project.org

14 / 33



(O, CEETNLIEREE S Testing the variance

A test for the variance

» Note that the distribution of ZZ + - - 4+ Z2 does not depend
on the population parameters i and o2 (unlike V)

» Statisticians have worked out the distribution of >, Z? for
i.i.d. Z; ~ N(0,1), known as the chi-squared distribution

n
i=1

with n degrees of freedom (df = n)

» The x2 distribution has expectation E[}"; Z?] = n and
variance Var[>"; Z?] = 2n = confirms E[V] = no?
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(O, CEETNLIEREE S Testing the variance

A test for the variance

» Under Hp : 0 = 09, we have

4
_2=212+...+23NX%
%0

» Appropriate rejection thresholds for the test statistic V/ /o3 can
easily be obtained with R

» x2 distribution is not symmetric, so one-sided tail probabilities
are used (with o/ = a//2 for two-sided test)
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(O, CEETNLIEREE S Testing the variance

A test for the variance

» Under Hp : 0 = 09, we have

4
_2:212+...+23NX%
%0

» Appropriate rejection thresholds for the test statistic V/ /o3 can
easily be obtained with R

» x2 distribution is not symmetric, so one-sided tail probabilities
are used (with o/ = «/2 for two-sided test)

» Again, there are two problems:

1. need to make hypothesis about  in order to test o = gg
2. Hy easily rejected for p # g, even though o = op may be true
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(O, CEETNLIEREE S Testing the variance

Intermission: Distributions in R

» R can compute density functions and tail probabilities or
generate random numbers for a wide range of distributions

» Systematic naming scheme for such functions:
dnorm()  density function of Gaussian (normal) distribution
pnorm() tail probability
gnorm() quantile = inverse tail probability
rnorm() generate random numbers
» Available distributions include Gaussian (norm), chi-squared
(chisq), t (t), F (£), binomial (binom), Poisson (pois), ...
1= you will encounter many of them later in the course
» Each function accepts distribution-specific parameters
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(O, CEETNLIEREE S Testing the variance

Intermission: Distributions in R

> x <- rnorm(50, mean=100, sd=15) 7 random sample of 50 IQ scores
> hist(x, freq=FALSE, breaks=seq(45,155,10)) # histogram

> xG <- seq(45, 155, 1) # theoretical density in steps of 1 1Q point
> yG <- dnorm(xG, mean=100, sd=15)
> lines(xG, yG, col="blue", lwd=2)

# What is the probability of an 1Q score above 1507
# (we need to compute an upper tail probability to answer this question)

> pnorm(150, mean=100, sd=15, lower.tail=FALSE)

# What does it mean to be among the bottom 25% of the population?
> gnorm(.25, mean=100, sd=15) # inverse tail probability
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(O, CEETNLIEREE S Testing the variance

Intermission: Distributions in R

# Now do the same for a chi-squared distribution with 5 degrees of freedom
# (hint: the parameter you're looking for is df=5)
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(O, CEETNLIEREE S Testing the variance

Intermission: Distributions in R

# Now do the same for a chi-squared distribution with 5 degrees of freedom
# (hint: the parameter you're looking for is df=5)

> xC <- seq(0, 10, .1)
> yC <- dchisq(xC, df=5)
> plot(xC, yC, type="1", col="blue", lwd=2)

# tail probability for >°. Z? > 10
> pchisq(10, df=5, lower.tail=FALSE)

# What is the appropriate rejection criterion for a variance test with & = 0.057
> qchisq(.025, df=5, lower.tail=FALSE) # two-sided:V /o3 > n
> qchisq(.025, df=5, lower.tail=TRUE) # two-sided: V /o2 < n

[m] (= = =
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(O, CEETNLIEREE S Testing the variance

The sample variance

» Idea: replace true p by sample value X (which is a r.v.!)

V= (X1 = X)? + -+ (X — X)?
» But there are two problems:

w X; — X ~ N(0,02) not guaranteed because X # u

1= terms are no longer i.i.d. because X depends on all X;

o F
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(O, CEETNLIEREE S Testing the variance

The sample variance

» We can easily work out the distribution of V’/ for n = 2:

V' = (X1 — X)? + (X2 — X)?
= (Xl — %)2 + (X2 _ X1-5X2 )2
_ _ 1
= (552 + (55502 = 5% - X0

where Xl - X2 ~ N(0,2U2) for i.i.d. X1,X2 ~ N(,u,02)

» Can also show that V/ and X are independent

» follows from independence of X; — X, and X; + Xo
» this is only the case for independent Gaussian variables
(Geary 1936, p. 178)
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The sample variance

(O, CEETNLIEREE S Testing the variance

» We now have

2
Vo2 (Xl ?/_2X2) _ 272
g

with Z2 ~ X% because of X; — Xo ~ N(0,20?)

o F
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(O, CEETNLIEREE S Testing the variance

The sample variance

» We now have
2
Vo2 <X1 —X2> _ 272
V2

with Z2 ~ x2 because of X; — Xa ~ N(0,2052)
» For n > 2 it can be shown that

n n—1
V=) (X - X)P=02) 77
i=1 j=1

. 2 2 . N/
with ZJ- 27~ Xpo1 independent from X
» proof based on multivariate Gaussian and vector algebra

» notice that we "lose” one degree of freedom because one
parameter (& X) has been estimated from the sample
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(O, CEETNLIEREE S Testing the variance

Sample variance and the chi-squared test

1 < ”
§2=—2) (Xi—X)?

» This motivates the following definition of sample variance S
i=1
with sampling distribution (n —1)S%/02 ~ x2_4

» S2 s an unbiased estimator of variance: E[S?] = o

2

o F
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(O, CEETNLIEREE S Testing the variance

Sample variance and the chi-squared test

v

This motivates the following definition of sample variance 52

1 _
S? = n_lz(x,-—X)2

i=1

with sampling distribution (n —1)S%/02 ~ x2_4
2

v

S2 is an unbiased estimator of variance: E[S?] = o

We can use S to test Hp : 0 = oo without making any
assumptions about the true mean y = chi-squared test

v

v

Remarks
1

» sample variance (-15) vs. population variance ()
» 2 distribution doesn't have parameters o2 etc., so we need to
specify the distribution of S2 in a roundabout way

» independence of S and X will play an important role later
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(O, CEETNLIEREE S Testing the variance

Sample data for this session

# Let us take a reproducible sample from the population of Ingary
> library(SIGIL)

> Census <- simulated.census()

> Survey <- Census[1:100, ]

# We will be testing hypotheses about the distribution of body heights
> x <- Survey$height # sample data: n items
> n <- length(x)

o & = = = 9QQ
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(O, CEETNLIEREE S Testing the variance

Chi-squared test of variance in R

# Chi-squared test for a hypothesis about the s.d. (with unknown mean)

# Ho: o = 12 (one-sided test against o > oyp)

> sigma0 <- 12 # you can also use the name ¢0 in a Unicode locale
82 <- sum((x - mean(x))~2) / (n-1) # unbiased estimator of o2
82 <- var(x) # this should give exactly the same value

X2 <- (n-1) * 82 / sigma0~2  # has x? distribution under Ho
pchisq(X2, df=n-1, lower.tail=FALSE)

vV V V V

# How do you carry out a one-sided test against o < oq?

# Here's a trick for an approximate two-sided test (try e.g. with o9 = 20)
> alt.higher <- 82 > sigma0~2
> 2 * pchisq(X2, df=n-1, lower.tail=!alt.higher)

[m] (= = =
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Student’s ¢ test
Outline

One-sample tests

Student’s t test
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(O ISR SRS Student's t test

Student's t test for the mean

» Now we have the ingredients for a test of Hy : ;1 = o that
does not require knowledge of the true variance o2

» In the z-score for X

X —
72" Mo
a/v/n
replace the unknown true s.d. o by the unbiased sample
estimate & = V' 52, resulting in a so-called t-score:
X — 1o

V/S?%/n

» William S. Gosset worked out the precise sampling distriution
of T and published it under the pseudonym “Student”
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(O ISR SRS Student's t test

Student's t test for the mean

» Because X and S? are independent, we find that

T ~ty,1 under Hy:p=pg
Student's ¢t distribution with df = n — 1 degrees of freedom

PANG

28 / 33
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(O ISR SRS Student's t test

Student's t test for the mean

» Because X and S? are independent, we find that
T ~ty,1 under Hy:p=pg
Student's ¢t distribution with df = n — 1 degrees of freedom

» |n order to carry out a one-sample t test, calculate the statistic
X —
o X" Ho

\/s%/n
and reject Ho : = po if |t| > C

o F
SIGIL (Baroni & Evert) 3b. Continuous Data: Inference sigil.r-forge.r-project.org

28 / 33



(O ISR SRS Student's t test

Student's t test for the mean

» Because X and S? are independent, we find that
T ~ty,1 under Hy:p=pg

Student's ¢t distribution with df = n — 1 degrees of freedom
» |n order to carry out a one-sample t test, calculate the statistic
_ X~ ko

\/s%/n

and reject Ho : = o if [t| > C
» Rejection threshold C depends on df = n — 1 and desired

significance level @ (in R: -qt(a/2, n—1))
1= very close to z-score thresholds for n > 30

SIGIL (Baroni & Evert) 3b. Continuous Data: Inference sigil.r-forge.r-project.org 28 / 33



(O ISR SRS Student's t test

The mathematical magic behind Student's t test

» Student's t distribution characterizes the quantity
V4

NIZC

where Z ~ N(0,1) and V ~ X3 are independent r.v.

PANG
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(O ISR SRS Student's t test

The mathematical magic behind Student's t test

» Student's t distribution characterizes the quantity
V4

NIZC

where Z ~ N(0,1) and V ~ X3 are independent r.v.
variance o2

» T ~ t,_1 under Hp : ;= po because the unknown population

T X o
\V/S?/n

o F
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(O ISR SRS Student's t test

The mathematical magic behind Student's t test

» Student's t distribution characterizes the quantity
V4

NIZC

where Z ~ N(0,1) and V ~ X3 are independent r.v.
variance o2

» T ~ t,_1 under Hp : ;= po because the unknown population

cancels out between the independent r.v. X and 52

v X—po
XM 75
\V/S?/n 52

no?
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(O ISR SRS Student's t test

The mathematical magic behind Student's t test

» Student's t distribution characterizes the quantity
V4

NIZC

where Z ~ N(0,1) and V ~ xj are independent r.v
variance o

» T ~ t,_1 under Hp : ;= po because the unknown population
T =

5 -
X — MO__#_

cancels out between the independent r.v. X and 52
X—
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The mathematical magic behind Student's t test

» Student's t distribution characterizes the quantity
V4

NIZC

where Z ~ N(0,1) and V ~ xj are independent r.v
variance o

» T ~ t,_1 under Hp : ;= po because the unknown population

cancels out between the independent r.v. X and 52

X X— X—po
X—pio
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(O ISR SRS Student's t test

The mathematical magic behind Student's t test

» Student's t distribution characterizes the quantity
V4

NIZC

where Z ~ N(0,1) and V ~ X3 are independent r.v
» T ~ t,_1 under Hp : ;= po because the unknown population
cancels out between the independent r.v. X and 52

variance o2
c X— X—po X—pio
F_X—po _ T o _ o//n
2 _
vEm s s DS -

Koo N(0,1) and V = DS a2
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S G
One-sample t test in R

# we will use the same sample x of size n as in the previous example

# Student’s t-test for a hypothesis about the mean (with unknown s.d.)
# Ho: p = 165 cm

> mu0 <- 165

> x.bar <- mean(x) # sample mean X

> s2 <- var(x) # sample variance s?

> t.score <- (x.bar - mu0) / sqrt(s2 / n) # t statistic

> print(t.score)  # positive indicates 1 > po, negative i < pig
> -qt(0.05/2, n-1) # two-sided rejection threshold for |t| at « = .05

\2

2 * pt(abs(t.score), n-1, lower=FALSE) # two-sided p-value
# Mini-task: plot density function of t distribution for different d.f.

> t.test(x, mu=165) +# agrees with our “manual’’ t-test
# Note that t.test () also provides a confidence interval for the true p!

[m] (= = =
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Confidence intervals
Outline

One-sample tests

Confidence intervals

o F
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Confidence intervals
Confidence intervals

» If we do not have a specific Hp to start from, estimate

confidence interval for i or o2 by inverting hypothesis tests

» in principle same procedure as for binomial confidence intervals
» implemented in R for t test and chi-squared test

» Confidence interval has a particularly simple form for the t test

o F
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Confidence intervals

» If we do not have a specific Hp to start from, estimate
confidence interval for i or o2 by inverting hypothesis tests

» in principle same procedure as for binomial confidence intervals
» implemented in R for t test and chi-squared test

» Confidence interval has a particularly simple form for the ¢t test
» Given Hp : 1 = a for some a € R, we reject Hy if

X —a

t|=|—=—==| > C

\/s%/n

with C =~ 2 for @« = .05 and n > 30
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(O], ISR SRES M Confidence intervals

Confidence intervals

» If we do not have a specific Hp to start from, estimate
confidence interval for i or o2 by inverting hypothesis tests

» in principle same procedure as for binomial confidence intervals
» implemented in R for t test and chi-squared test

» Confidence interval has a particularly simple form for the t test
» Given Hp : 1 = a for some a € R, we reject Hy if
X —a
t|=|—=—==| > C
\/s%/n
with C ~ 2 for « = .05 and n > 30
s s
Vvn Vn

v this is the origin of the “£2 standard deviations” rule of thumb

- x—C <pu < x+C
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Confidence intervals

v

Can you work out a similar confidence interval for ¢2?
Test hypotheses Hy : 0 = a for different values a > 0
1w Which Hp are rejected given the observed sample variance s27

v

v

If Hy is true, we have the sampling distribution

7% .= (n— 1)52/3 ~ X%—l

v

Reject Hp if Z2 > C; or Z? < G, (not symmetric)

v

Solve inequalities to obtain confidence interval

(n—1)s°/C1 < 0% < (n—1)s?/G
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