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Introduction Categorical vs. numerical variables

Reminder: the library metaphor

» In the library metaphor, we took random samples from an
infinite population of tokens (words, VPs, sentences, ...)
» Relevant property is a binary (or categorical) classification

» active vs. passive VP or sentence (binary)
instance of lemma TIME vs. some other word (binary)

>
» subcategorisation frame of verb token (itr, tr, ditr, p-obj, ...
>

part-of-speech tag of word token (50+ categories)

» Characterisation of population distribution is straightforward
» binomial: true proportion m = 10% of passive VPs,
or relative frequency of TIME, e.g. m = 2000 pmw
> alternatively: specify redundant proportions (m,1 — 7),
e.g. passive/active VPs (.1,.9) or TIME/other (.002,.998)
» multinomial: multiple proportions 7y +m + -+ + 7 = 1,
e.g. (7Tnoun = -28’7Tverb = -17a7radj = 08, .. )
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e[ e s Categorical vs. numerical variables

Numerical properties

In many other cases, the properties of interest are numerical:

Population census Wikipedia articles

height weight shoes sex tokens types TTR avg len.
178.18 69.52 39.5 f 696 251 2.773 4.532
160.10 51.46 37.0 f 228 126 1.810 4.488
150.09 43.05 355 f 390 174  2.241 4.251
182.24 63.21 46.0 m 455 176 2.585 4.412
169.88 63.04 435 m 399 214  1.864 4.301
185.22  90.59 46.5 m 297 148  2.007 4.399
166.89 47.43 43.0 m 755 275 2.745 3.861
162.58 54.13 37.0 f 299 171 1.749 4.524
Sl e | 5 /) A
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Introduction
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NGNS Categorical vs. numerical variables

Descriptive vs. inferential statistics
Two main tasks of “classical” statistical methods (numerical data):

1. Descriptive statistics

» compact description of the distribution of a (numerical)
property in a very large or infinite population

» often by characteristic parameters such as mean, variance, ...

» this was the original purpose of statistics in the 19th century

2. Inferential statistics

> infer (aspects of ) population distribution from a comparatively
small random sample

» accurate estimates for level of uncertainty involved

» often by testing (and rejecting) some null hypothesis Hp

SIGIL (Baroni & Evert) 3a. Continuous Data: Description sigil.r-forge.r-project.org 6 / 40

LIS Scales of measurement

Statisticians distinguish 4 scales of measurement

Categorical data
1. Nominal scale: purely qualitative classification
» male vs. female, passive vs. active, POS tags, subcat frames
2. Ordinal scale: ordered categories
» school grades A-E, social class, low/medium/high rating

Numerical data
3. Interval scale: meaningful comparison of differences
» temperature (°C), plausibility & grammaticality ratings
4. Ratio scale: comparison of magnitudes, absolute zero
> time, length/width/height, weight, frequency counts

Additional dimension: discrete vs. continuous numerical data

» discrete: frequency counts, rating (1,...,7), shoe size, ...
» continuous: length, time, weight, temperature, ...
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IS Scales of measurement DAV SR  Characteristic measures

Which scale of measurement / data type is it?

» subcategorisation frame
» reaction time (in psycholinguistic experiment)
» familiarity rating on scale 1,...,7

» room number Descriptive statistics

> grammaticality rating n*n' u??u, u?vv or uoku CharaCterIStIC measures

» magnitude estimation of plausibility (graphical scale)
» frequency of passive VPs in text
» relative frequency of passive VPs

» token-type-ratio (TTR) and average word length (Wikipedia)

= in this unit: continuous numerical variables on ratio scale
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DIV SR Characteristic measures DIV SR Characteristic measures

The task Characteristic measures: central tendency

» Census data from small country of Ingary with m = 502,202

» How would you describe body heights with a single number?
inhabitants. The following properties were recorded: y y hetg &

> boqy hgight in cm Xi 4 -+ X 17
> weight in kg mean y=-———#= — ZXI.
» shoe size in Paris points (Continental European system) m m
» sex (male, female)
» Frequency statistics for m = 1,429,649 Wikipedia articles: > Is this intuitively sensible? Or are we just used to it?

> token count
> type count

» token-type ratio (TTR) > mean (FakeCensus$height)
» average word length (across tokens) [1] 170.9781
v Describe / summarise these data sets (continuous variables) > mean(FakeCensus$weight)

[1] 65.28917
> mean(FakeCensus$shoe.size)

[1] 41.49712

> library(SIGIL)
> FakeCensus <- simulated.census()
> WackypediaStats <- simulated.wikipedia()
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Descriptive statistics Characteristic measures Descriptive statistics Characteristic measures

Characteristic measures: variability (spread) Characteristic measures: variability (spread)

» Average weight of 65.3 kg not very useful if we have to design 1
an elevator for 10 persons or a chair that doesn't collapse: variance 0% = — Z(x; — )?
We need to know if everyone weighs close to 65 kg, or whether mia

the typical range is 40-100 kg, or whether it is even larger. o
= Do you remember how to calculate this in R?

» Measure of spread: minimum and maximum, here 30-196 kg » height 171.00. 02 — 199,50 1412
ight: u = .00, o = .50, o = 14.

» We're more interested in the “typical” range of values without > weight: 1 — 65.29, 02 = 306.72, o — 17.51
the most extreme cases » shoe size: = 41.50, 02 = 21.70, 0 = 4.66
» Average variability based on error x; — u for each individual
shows how well the mean p describes the entire population » Mean and variance are not on a comparable scale
- standard deviation (s.d.) o = Vo2
m
variance %= — g (x; — )? a o :
T m i H » NB: still gives more weight to larger errors!
i=1
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DIV SR Characteristic measures DIV SRS Histogram & density

Characteristic measures: higher moments Outline

» Mean based on (x;)! is also known as a “first moment”,
variance based on (x;)? as a “second moment”

» The third moment is called skewness

1 i Xi — K 3
= E ; < o Descrlptlve statistics

and measures the asymmetry of a distribution Histogram & density
» The fourth moment (kurtosis) measures “bulginess”

» How useful are these characteristic measures?
» Given the mean, s.d., skewness, ..., can you tell how many
people are taller than 190 cm, or how many weigh = 100 kg?
» Such measures mainly used for computational efficiency, and
even this required an elaborate procedure in the 19th century
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The shape of a distribution: discrete data

Discrete numerical data can be tabulated and plotted
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The shape of a distribution: histogram for continuous data

Continuous data must be collected into bins = histogram

Density
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» Density scale is comparable for different numbers of bins

» Area of histogram bar = relative frequency in population
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DL VERE S Histogram & density

The shape of a distribution: histogram for continuous data

Continuous data must be collected into bins = histogram

Frequency
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» No two people have exactly the same body height, weight, ...

» Frequency counts (= y-axis scale) depend on number of bins
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Refining histograms: the density function
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» Contour of histogram = density function
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DRIV SR Random variables & expectations DAV EHE I Random variables & expectations

Outline Formal mathematical notation

» Population Q = {wi,ws,...,wn} with m = oo
> item wy = person, Wikipedia article, word (lexical RT), ...
» For each item, we are interested in several properties (e.g.
height, weight, shoe size, sex) called random variables (r.v.)
> height X : Q@ — Rt with X(wx) = height of person wy
Descriptive statistics » weight Y : Q = Rt with Y(wx) = weight of person wy
> sex G :Q — {0,1} with G(wk) = 1 iff wy is a woman
1z formally, a r.v. is a (usually real-valued) function over Q

Random variables & expectations » Mean, variance, etc. computed for each random variable:
1 .
ux = — Z X(w) =: E[X] expectation
m
weN
5 1 2 .
ok = — Z (X(w) — px)” =: Var[X] variance
m weN
2
=E [(X - ux)?]
sigil.r-forge.r-project.org 21 / 40 sigil.r-forge.r-project.org 22 / 40

DAV SR  Random variables & expectations DAV EHE IS Random variables & expectations

Working with random variables A justification for the mean

v

X'(w) == (X(w) — ,u)2 defines new rv. X' : Q — R

2 . .
> o5 tells us how well the r.v. X is characterised b
1= any function f(X) of a r.v. is itself a random variable X ¥ KX

» The expectation is a linear functional on r.v.: > More generally, E [(X - 3)2] tells us how well X is
» E[X+ Y] =E[X]+E[Y]for X,Y : Q>R characterised by some real number 2 € R
> E[r - X]=r-E[X] for r e R N » The best single value we can give for X is the one that
» E[a] = a for constant rv.ac R (additional p.roperty) , minimises the average squared error:
» These rules enable us to simplify the computation of o5 :
0% = Var[X] = E [(X — ux)?] = E [X? = 2uxX + 4i%] E [(X — a)’] = E[X?] — 2aE[X] +2a°
= E[X?] - 2ux BIX] +u% = B[X?] — ik —hx
——
=hx » It is easy to see that a minimum is achieved for a = ux
» Random variables and probabilities: r.v. X describes outcome w5 The quadratic error term in our definition of 0% guarantees
of picking a random w € Q - sampling distribution that there is always a unique minimum. This would not have

1 been the case e.g. with |[X — a instead of (X — a)2.
Pr(a< X <b)= E|{w€Q|a§X(w) < b}|
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DRIV SR Random variables & expectations DAV EHE I Random variables & expectations

How to compute the expectation of a discrete variable How to compute the expectation of a continuous variable
» Population distribution of a discrete variable is fully described > Popu!ation di§tributio_n of CO"Fi"UOUS variable can be
by giving the relative frequency of each possible value t € R: described _by Its density function g : R — [0, oc]
> keep in mind that Pr(X = t) = 0 for almost every value
T = Pr(X =1t) t € R: nobody is exactly 172.3456789 cm tall!
E[X] = Z & = Z Z i = Z t Z l Area under density curve between a and b =
m m m . . :
we t X(w)=t t X(w)=t proportion of items w € Q with a < X(w) < b.

——
group by value of X b
X(w) =t Pr(aSXSb):/g(t)dt
:Zt:t.%:zt:tﬂ't:zt:tf)r(x:t) a

Same reasoning as for discrete variable leads to:

a b
» The second moment E[X?] needed for Var[X] can also be oo
obtained in this way from the population distribution: E[X] = / t-g(t)dt and
—0o0
E[X?] =) £ -Pr(X=t) +00
: BIFO0] = | (2)- gl
—0o0
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Outline Different types of continuous distributions
.
Continuous distributions |° ° ° X
The shape of a distribution g = = = = =
3‘.5 4i0 4.‘5 5‘.0 5T5

symmetric, bell-shaped
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(LIRS TN The shape of a distribution The shape of a distribution

Different types of continuous distributions Different types of continuous distributions
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Different types of continuous distributions Different types of continuous distributions
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(T UITHENC B INECIEN  The normal distribution (Gaussian)

Outline

Continuous distributions

The normal distribution (Gaussian)
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(TR [STMEEEE  The normal distribution (Gaussian)

» ldealised density function is given by simple equation:

g(t)= gy

with parameters i € R (location) and o > 0 (width)

o (t-1)?/202

a())

20

20

N

» Notation: X ~ N(u,c?) if r.v. has such a distribution
» No coincidence: E[X] =z and Var[X] = 02 (= homework ;-)
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(CCHITLITHERCIENICLEN  The normal distribution (Gaussian)

The Gaussian distribution

» In many real-life data sets, the distribution has a typical
“bell-shaped” form known as a Gaussian (or normal)
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(LTRSS The normal distribution (Gaussian)

Important properties of the Gaussian distribution

» Distribution is well-behaved: symmetric, and most values are
relatively close to the mean p (within 2 standard deviations)

H+20’ 1

Pr(p—20<X<pu+2 :/ e~ (t=p)?/20% gy
(n—20 f+ 20) 2 VR

~ 95.5%

> 68.3% are within range p — o < X < 1+ o (one s.d.)

» The central limit theorem explains why this particular
distribution is so widespread (sum of independent effects)

1z Mean and standard deviation are meaningful characteristics if
distribution is Gaussian or near-Gaussian

» completely determined by these parameters
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(T UITHENC B INECIEN  The normal distribution (Gaussian) (CCHITLITHERCIENICLEN  The normal distribution (Gaussian)

Assessing normality Assessing normality: Histogram & density function

Plot histogram and

» Many hypothesis tests and other statistical techniques assume estimated density:

that random variables follow a Gaussian distribution
» If this normality assumption is not justified, a significant test
result may well be entirely spurious.

0.030

—| — estimated density
—— normal approximation

> hist(x,freq=FALSE)
> lines(density(x))

0.025

0.020

» |t is therefore important to verify that sample data come from Compare best-matching

such a Gaussian or near-Gaussian distribution Gaussian distribution: i
> xG <- s °
. . . . seq(min(x) ,max(x),1len=100) g
» Method 1: Comparison of histograms and density functions ; 36 P ’ s
dnorm(xG,mean(x),sd(x)) %
» Method 2: Quantile-quantile plots > lines(xG,yG,col="red") <
3
100 120 140 160 180 200 220
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Assessing normality: Histogram & density function Assessing normality: Quantile-quantile plots

P|o.t histogram‘and Quantile-quantile plots
estimated density: are better suited for

small samples:

0.030

] — estimated density
—— normal approximation

> hist(x,freq=FALSE)
> lines(density(x))

0.025
I

> qgnorm(x)
> qqline(x,col="red")

0.020
I

Compare best-matching

Sample Quantiles

Gaussian distribution: 2w e
£ g If distribution is
> xG <- . .
o near-Gaussian, points
seq(min(x) ,max(x),len=100) g 4 P ;
> 3G <- s should follow red line.
dnorm(xG,mean(x),sd(x)) % E
> lines(xG,yG,col="red") < One-sided deviation .
g f g Skewed diStribUtion Theoretical Quantiles
Substantial deviation = 0 50 100 150

not normal (problematic)
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(T UITHENC B INECIEN  The normal distribution (Gaussian) (CCHITLITHERCIENICLEN  The normal distribution (Gaussian)

Assessing normality: Quantile-quantile plots Playtimel!
uantile-quantile plots .

S'e betterqsuited fzr < | » Take random samples of n items each from the census and
small samples: h wikipedia data sets (e.g. n = 100)
S 0 s | library(corpora)
5 ggrllzflz(z col="red") 8 B Survey <- sample.df (FakeCensus, 7, sort=TRUE)

é s » Plot histograms and estimated density for all variables
If distribution is 5 » Assess normality of the underlying distributions
near-Gaussian, points s | » by comparison with Gaussian density function
should follow red line. » by inspection of quantile-quantile plots

= Can you make them look like the figures in the slides?
One-sided deviation X ‘ » Plot histograms for all variables in the full data sets
C 2 and estimated density functions if you're patient enough
-» skewed distribution
Theoretical Quantiles

» What kinds of distributions do you find?
» Which variables can meaningfully be described by
mean u and standard deviation o7
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