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Introduction Categorical vs. numerical variables

Reminder: the library metaphor

I In the library metaphor, we took random samples from an
infinite population of tokens (words, VPs, sentences, . . . )

I Relevant property is a binary (or categorical) classification
I active vs. passive VP or sentence (binary)
I instance of lemma TIME vs. some other word (binary)
I subcategorisation frame of verb token (itr, tr, ditr, p-obj, . . . )
I part-of-speech tag of word token (50+ categories)

I Characterisation of population distribution is straightforward
I binomial: true proportion π = 10% of passive VPs,

or relative frequency of TIME, e.g. π = 2000 pmw
I alternatively: specify redundant proportions (π, 1− π),

e.g. passive/active VPs (.1, .9) or TIME/other (.002, .998)
I multinomial: multiple proportions π1 + π2 + · · ·+ πK = 1,

e.g. (πnoun = .28, πverb = .17, πadj = .08, . . .)
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Introduction Categorical vs. numerical variables

Numerical properties

In many other cases, the properties of interest are numerical:

Population census

height weight shoes sex

178.18 69.52 39.5 f
160.10 51.46 37.0 f
150.09 43.05 35.5 f
182.24 63.21 46.0 m
169.88 63.04 43.5 m
185.22 90.59 46.5 m
166.89 47.43 43.0 m
162.58 54.13 37.0 f

Wikipedia articles

tokens types TTR avg len.

696 251 2.773 4.532
228 126 1.810 4.488
390 174 2.241 4.251
455 176 2.585 4.412
399 214 1.864 4.301
297 148 2.007 4.399
755 275 2.745 3.861
299 171 1.749 4.524
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Introduction Categorical vs. numerical variables

Descriptive vs. inferential statistics

Two main tasks of “classical” statistical methods (numerical data):

1. Descriptive statistics
I compact description of the distribution of a (numerical)

property in a very large or infinite population
I often by characteristic parameters such as mean, variance, . . .
I this was the original purpose of statistics in the 19th century

2. Inferential statistics
I infer (aspects of) population distribution from a comparatively

small random sample
I accurate estimates for level of uncertainty involved
I often by testing (and rejecting) some null hypothesis H0
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Introduction Scales of measurement

Statisticians distinguish 4 scales of measurement

Categorical data
1. Nominal scale: purely qualitative classification

I male vs. female, passive vs. active, POS tags, subcat frames
2. Ordinal scale: ordered categories

I school grades A–E, social class, low/medium/high rating

Numerical data
3. Interval scale: meaningful comparison of differences

I temperature (°C), plausibility & grammaticality ratings
4. Ratio scale: comparison of magnitudes, absolute zero

I time, length/width/height, weight, frequency counts

Additional dimension: discrete vs. continuous numerical data
I discrete: frequency counts, rating (1, . . . , 7), shoe size, . . .
I continuous: length, time, weight, temperature, . . .
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Introduction Scales of measurement

Quiz

Which scale of measurement / data type is it?

I subcategorisation frame
I reaction time (in psycholinguistic experiment)
I familiarity rating on scale 1, . . . , 7
I room number
I grammaticality rating: “*”, “??”, “?” or “ok”
I magnitude estimation of plausibility (graphical scale)
I frequency of passive VPs in text
I relative frequency of passive VPs
I token-type-ratio (TTR) and average word length (Wikipedia)

+ in this unit: continuous numerical variables on ratio scale

SIGIL (Baroni & Evert) 3a. Continuous Data: Description sigil.r-forge.r-project.org 9 / 40

Descriptive statistics Characteristic measures
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Descriptive statistics Characteristic measures

The task

I Census data from small country of Ingary with m = 502,202
inhabitants. The following properties were recorded:

I body height in cm
I weight in kg
I shoe size in Paris points (Continental European system)
I sex (male, female)

I Frequency statistics for m = 1,429,649 Wikipedia articles:
I token count
I type count
I token-type ratio (TTR)
I average word length (across tokens)

+ Describe / summarise these data sets (continuous variables)

> library(SIGIL)
> FakeCensus <- simulated.census()
> WackypediaStats <- simulated.wikipedia()
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Descriptive statistics Characteristic measures

Characteristic measures: central tendency

I How would you describe body heights with a single number?

mean µ =
x1 + · · ·+ xm

m
=

1
m

m∑

i=1

xi

I Is this intuitively sensible? Or are we just used to it?

> mean(FakeCensus$height)
[1] 170.9781
> mean(FakeCensus$weight)
[1] 65.28917
> mean(FakeCensus$shoe.size)
[1] 41.49712
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Descriptive statistics Characteristic measures

Characteristic measures: variability (spread)

I Average weight of 65.3 kg not very useful if we have to design
an elevator for 10 persons or a chair that doesn’t collapse:
We need to know if everyone weighs close to 65 kg, or whether
the typical range is 40–100 kg, or whether it is even larger.

I Measure of spread: minimum and maximum, here 30–196 kg
I We’re more interested in the “typical” range of values without

the most extreme cases
I Average variability based on error xi − µ for each individual

shows how well the mean µ describes the entire population

variance σ2 =
1
m

m∑

i=1

(xi − µ)2
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Descriptive statistics Characteristic measures

Characteristic measures: variability (spread)

variance σ2 =
1
m

m∑

i=1

(xi − µ)2

+ Do you remember how to calculate this in R?
I height: µ = 171.00, σ2 = 199.50, σ = 14.12
I weight: µ = 65.29, σ2 = 306.72, σ = 17.51
I shoe size: µ = 41.50, σ2 = 21.70, σ = 4.66

I Mean and variance are not on a comparable scale
Ü standard deviation (s.d.) σ =

√
σ2

I NB: still gives more weight to larger errors!
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Descriptive statistics Characteristic measures

Characteristic measures: higher moments

I Mean based on (xi )
1 is also known as a “first moment”,

variance based on (xi )
2 as a “second moment”

I The third moment is called skewness

γ1 =
1
m

m∑

i=1

(
xi − µ
σ

)3

and measures the asymmetry of a distribution
I The fourth moment (kurtosis) measures “bulginess”

I How useful are these characteristic measures?
I Given the mean, s.d., skewness, . . . , can you tell how many

people are taller than 190 cm, or how many weigh ≈ 100 kg?
I Such measures mainly used for computational efficiency, and

even this required an elaborate procedure in the 19th century
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Descriptive statistics Histogram & density
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Descriptive statistics Histogram & density

The shape of a distribution: discrete data
Discrete numerical data can be tabulated and plotted
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Descriptive statistics Histogram & density

The shape of a distribution: histogram for continuous data
Continuous data must be collected into bins Ü histogram
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I No two people have exactly the same body height, weight, . . .
I Frequency counts (= y-axis scale) depend on number of bins
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Descriptive statistics Histogram & density

The shape of a distribution: histogram for continuous data
Continuous data must be collected into bins Ü histogram
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I Density scale is comparable for different numbers of bins
I Area of histogram bar ≡ relative frequency in population
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Descriptive statistics Histogram & density

Refining histograms: the density function
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I Contour of histogram = density function
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Descriptive statistics Random variables & expectations

Outline

Introduction
Categorical vs. numerical variables
Scales of measurement

Descriptive statistics
Characteristic measures
Histogram & density
Random variables & expectations

Continuous distributions
The shape of a distribution
The normal distribution (Gaussian)

SIGIL (Baroni & Evert) 3a. Continuous Data: Description sigil.r-forge.r-project.org 21 / 40

Descriptive statistics Random variables & expectations

Formal mathematical notation

I Population Ω = {ω1, ω2, . . . , ωm} with m ≈ ∞
I item ωk = person, Wikipedia article, word (lexical RT), . . .

I For each item, we are interested in several properties (e.g.
height, weight, shoe size, sex) called random variables (r.v.)

I height X : Ω→ R+ with X (ωk) = height of person ωk

I weight Y : Ω→ R+ with Y (ωk) = weight of person ωk

I sex G : Ω→ {0, 1} with G (ωk) = 1 iff ωk is a woman
+ formally, a r.v. is a (usually real-valued) function over Ω

I Mean, variance, etc. computed for each random variable:

µX =
1
m

∑

ω∈Ω

X (ω) =: E[X ] expectation

σ2
X =

1
m

∑

ω∈Ω

(
X (ω)− µX

)2
=: Var[X ] variance

= E
[
(X − µX )2]
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Descriptive statistics Random variables & expectations

Working with random variables

I X ′(ω) :=
(
X (ω)− µ

)2 defines new r.v. X ′ : Ω→ R
+ any function f (X ) of a r.v. is itself a random variable

I The expectation is a linear functional on r.v.:
I E[X + Y ] = E[X ] + E[Y ] for X ,Y : Ω→ R
I E[r · X ] = r · E[X ] for r ∈ R
I E[a] = a for constant r.v. a ∈ R (additional property)

I These rules enable us to simplify the computation of σ2
X :

σ2
X = Var[X ] = E

[
(X − µX )2] = E

[
X 2 − 2µXX + µ2

X

]

= E[X 2]− 2µX E[X ]︸ ︷︷ ︸
=µX

+µ2
X = E[X 2]− µ2

X

I Random variables and probabilities: r.v. X describes outcome
of picking a random ω ∈ Ω Ü sampling distribution

Pr(a ≤ X ≤ b) =
1
m

∣∣{ω ∈ Ω | a ≤ X (ω) ≤ b}
∣∣
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Descriptive statistics Random variables & expectations

A justification for the mean

I σ2
X tells us how well the r.v. X is characterised by µX

I More generally, E
[
(X − a)2] tells us how well X is

characterised by some real number a ∈ R
I The best single value we can give for X is the one that

minimises the average squared error:

E
[
(X − a)2] = E[X 2]− 2aE[X ]︸ ︷︷ ︸

=µX

+a2

I It is easy to see that a minimum is achieved for a = µX
+ The quadratic error term in our definition of σ2

X guarantees
that there is always a unique minimum. This would not have
been the case e.g. with |X − a| instead of (X − a)2.

SIGIL (Baroni & Evert) 3a. Continuous Data: Description sigil.r-forge.r-project.org 24 / 40



Descriptive statistics Random variables & expectations

How to compute the expectation of a discrete variable

I Population distribution of a discrete variable is fully described
by giving the relative frequency of each possible value t ∈ R:

πt = Pr(X = t)

E[X ] =
∑

ω∈Ω

X (ω)

m
=

∑

t

∑

X (ω)=t︸ ︷︷ ︸
group by value of X

t

m
=
∑

t

t
∑

X (ω)=t

1
m

=
∑

t

t · |X (ω) = t|
m

=
∑

t

t · πt =
∑

t

t · Pr(X = t)

I The second moment E[X 2] needed for Var[X ] can also be
obtained in this way from the population distribution:

E[X 2] =
∑

t

t2 · Pr(X = t)
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Descriptive statistics Random variables & expectations

How to compute the expectation of a continuous variable

I Population distribution of continuous variable can be
described by its density function g : R→ [0,∞]

I keep in mind that Pr(X = t) = 0 for almost every value
t ∈ R: nobody is exactly 172.3456789 cm tall!

Area under density curve between a and b =
proportion of items ω ∈ Ω with a ≤ X (ω) ≤ b.

Pr(a ≤ X ≤ b) =

∫ b

a
g(t) dt

Same reasoning as for discrete variable leads to: a b

E[X ] =

∫ +∞

−∞
t · g(t) dt and

E[f (X )] =

∫ +∞

−∞
f (t) · g(t) dt
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Continuous distributions The shape of a distribution

Different types of continuous distributions
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Continuous distributions The shape of a distribution

Different types of continuous distributions
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Continuous distributions The shape of a distribution

Different types of continuous distributions
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Continuous distributions The shape of a distribution

Different types of continuous distributions
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Continuous distributions The shape of a distribution

Different types of continuous distributions

30 35 40 45 50 55

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

D
en

si
ty

µ µ
+

σ

µ
−

σ

µ
+

2σ

µ
−

2σ

m
ed

ia
n

bimodal (mean & median misleading)

SIGIL (Baroni & Evert) 3a. Continuous Data: Description sigil.r-forge.r-project.org 32 / 40



Continuous distributions The normal distribution (Gaussian)
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Continuous distributions The normal distribution (Gaussian)

The Gaussian distribution

I In many real-life data sets, the distribution has a typical
“bell-shaped” form known as a Gaussian (or normal)
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Continuous distributions The normal distribution (Gaussian)

I Idealised density function is given by simple equation:

g(t) =
1

σ
√
2π

e−(t−µ)2/2σ2

with parameters µ ∈ R (location) and σ > 0 (width)

t

g(
t)

µ

σσ

2σ2σ

I Notation: X ∼ N(µ, σ2) if r.v. has such a distribution
I No coincidence: E[X ] = µ and Var[X ] = σ2 (Ü homework ;-)
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Continuous distributions The normal distribution (Gaussian)

Important properties of the Gaussian distribution

I Distribution is well-behaved: symmetric, and most values are
relatively close to the mean µ (within 2 standard deviations)

Pr(µ− 2σ ≤ X ≤ µ+ 2σ) =

∫ µ+2σ

µ−2σ

1
σ
√
2π

e−(t−µ)2/2σ2 dt

≈ 95.5%

I 68.3% are within range µ− σ ≤ X ≤ µ+ σ (one s.d.)

I The central limit theorem explains why this particular
distribution is so widespread (sum of independent effects)

+ Mean and standard deviation are meaningful characteristics if
distribution is Gaussian or near-Gaussian

I completely determined by these parameters
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Continuous distributions The normal distribution (Gaussian)

Assessing normality

I Many hypothesis tests and other statistical techniques assume
that random variables follow a Gaussian distribution

I If this normality assumption is not justified, a significant test
result may well be entirely spurious.

I It is therefore important to verify that sample data come from
such a Gaussian or near-Gaussian distribution

I Method 1: Comparison of histograms and density functions

I Method 2: Quantile-quantile plots
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Continuous distributions The normal distribution (Gaussian)

Assessing normality: Histogram & density function

Plot histogram and
estimated density:
> hist(x,freq=FALSE)
> lines(density(x))

Compare best-matching
Gaussian distribution:
> xG <-
seq(min(x),max(x),len=100)
> yG <-
dnorm(xG,mean(x),sd(x))
> lines(xG,yG,col="red")

Substantial deviation Ü

not normal (problematic)
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Continuous distributions The normal distribution (Gaussian)

Assessing normality: Histogram & density function

Plot histogram and
estimated density:
> hist(x,freq=FALSE)
> lines(density(x))

Compare best-matching
Gaussian distribution:
> xG <-
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Continuous distributions The normal distribution (Gaussian)

Assessing normality: Quantile-quantile plots

Quantile-quantile plots
are better suited for
small samples:

> qqnorm(x)
> qqline(x,col="red")

If distribution is
near-Gaussian, points
should follow red line.

One-sided deviation
Ü skewed distribution
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Continuous distributions The normal distribution (Gaussian)

Assessing normality: Quantile-quantile plots

Quantile-quantile plots
are better suited for
small samples:

> qqnorm(x)
> qqline(x,col="red")

If distribution is
near-Gaussian, points
should follow red line.

One-sided deviation
Ü skewed distribution
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Continuous distributions The normal distribution (Gaussian)

Playtime!

I Take random samples of n items each from the census and
wikipedia data sets (e.g. n = 100)

library(corpora)
Survey <- sample.df(FakeCensus, n, sort=TRUE)

I Plot histograms and estimated density for all variables
I Assess normality of the underlying distributions

I by comparison with Gaussian density function
I by inspection of quantile-quantile plots

+ Can you make them look like the figures in the slides?

I Plot histograms for all variables in the full data sets
(and estimated density functions if you’re patient enough)

I What kinds of distributions do you find?
I Which variables can meaningfully be described by

mean µ and standard deviation σ?
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