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In this exercise, we evaluate the effectiveness of a corpus-driven language course for second language teaching.
The SIGIL package includes a data set with the results of a simulated evaluation study.

library(SIGIL)
LC <- simulated.language.course()
knitr::kable(LC[seq(5, 95, 10), ])

id class pre post
5 CGQV A 66 69
15 VX35 A 58 60
25 EQT5 B 78 83
35 DNY6 B 58 65
45 IWZ9 C 9 19
55 MPR6 D 71 67
65 PVX0 E 44 41
75 MT34 F 42 41
85 MW08 F 32 42
95 FRT1 G 43 40

Students from seven different classes (in different schools) took a standardized language test (pre), then
worked with the language course for one month, then took another standardized test (post) at the same
difficulty level as the first test. The data frame LC lists the scores obtained by each student in the two tests
(with a maximum of 100 points) together with an anonymized personal code (id) and an anonymized label
for the student’s school (class).

To get an overview of the study, let us check how many students participated in the study and how many
students there are from each school:

nrow(LC) # number of students

## [1] 102

table(LC$class) # also shows there are seven schools

##
## A B C D E F G
## 15 20 10 10 14 18 15

Comparing the means of independent samples

Using the results of the pre test, we can test whether the language skills of students differ between schools.
For this purpose, each class is considered to be a random sample representative of the type of students
attending this school. Our goal is to make inferences about the average test score µ achieved by such students.
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Since the samples are drawn from different populations, it is appropriate to apply tests for two or more
independent samples.

The t-test for two independent samples

Let us begin by comparing schools A and B:

A <- subset(LC, class == "A")
B <- subset(LC, class == "B")

We can use Student’s t-test for two independent samples to compare the means of these two schools. The
null hypothesis underlying this test is

H0 : µ1 = µ2

where µ1 is the average test score of (the kind of) students attending school A and µ2 the average test score
of those attending school B.

t.test(A$pre, B$pre)

##
## Welch Two Sample t-test
##
## data: A$pre and B$pre
## t = 3.387, df = 32.697, p-value = 0.001855
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.809056 31.324278
## sample estimates:
## mean of x mean of y
## 67.26667 47.70000

Student’s version of the t-test for independent samples makes the (often unrealistic) assumption that the
variances of test scores in both populations are equal, i.e. σ2

1 = σ2
2 . The R implementation automatically

applies a suitable correction (Welch 1947), which adjusts the number of degrees of freedom (df) in case they
are not.

Q: Is there a reason to assume that σ2 may differ between schools A and B? (hint: ?var.test)

The t-test above yields a highly significant result (p ≈ .0019∗∗), so we can reject H0 with confidence. In order
to interpret this result in a meaningful way, it is essential also to look at the effect size

δ = µ1 − µ2

(recall that H0 : δ = 0). The t.test function also computes a 95% confidence interval for δ, which we can
access directly in the data structured returned:

t.test(A$pre, B$pre)$conf.int

## [1] 7.809056 31.324278
## attr(,"conf.level")
## [1] 0.95

Students from school A score at least 7.8 points better on average than students from school B. The confidence
interval also shows how much uncertainty there is in these two small samples: the true difference δ may be as
large as 31.3 points.
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Multiple comparisons

In principle, we could now apply multiple t-tests in order to make pairwise comparisons between all seven
schools, which results in a total of

(7
2
)

= 21 tests:

choose(7, 2)

## [1] 21

There is a fundamental problem in such multiple comparisons, though. If we’re willing to reject H0 for
p < .05, we run a 5% risk of a type I error in each individual test. At this risk, one would expect one false
positive among 21 tests (under the usual assumption that H0 is true). The risk of committing one or more
type I errors in the entire family of tests is thus much higher than the nominal significance level of 5%.

Statisticians speak of the family-wise error rate (FWER) for such multiple comparisons. If we assume the
results of tests are independent from each other, we can work out the precise distribution of the number of
type I errors. Each test is like throwing a coin, with the probability of a type I error being π = .05; the total
number of such false positives among n independent tests then follows a binomial distribution B(n, π):

Pr(k) =
(
n

k

)
πk(1 − π)n−k

For example, there is a chance of 37.6% of a single false positive in the family of tests, a chance of 19.8% that
there are two false positives, etc.

round(dbinom(0:7, size=21, p=0.05), 3)

## [1] 0.341 0.376 0.198 0.066 0.016 0.003 0.000 0.000

The probability of committing no type I error at all is only 34.1%. By the same token, the FWER probability
of at least one type I error is almost 66%!

1 - dbinom(0, size=21, p=0.05)

## [1] 0.6594384

Q: You can also compute this tail probability directly with pbinom. Can you work out how?

In many applications, it is more important to control the FWER rather than the risk of a type I error in each
individual test. This can be achieved by using a more conservative significance threshold α′ in the individual
tests in order to keep the FWER below the desired significance level α.

Assuming independence of the tests, we can work out the Šidák correction from the binomial distribution
above:

αS = 1 − (1 − α) 1
n

In our case, the adjusted significance level is αS ≈ 0.244% for FWER α = 5%.

alphaS <- 1 - (1 - .05) ^ (1 / 21)
alphaS

## [1] 0.002439557

Let us confirm that the correction works as expected:
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1 - dbinom(0, size=21, p=alphaS)

## [1] 0.05

The independence assumption made by the Šidák correction is often not valid, especially for pairwise
comparisons. Assume, for example, that we obtain a sample of particularly good students from one of the
seven schools by coincidence. How many false positives would we observe in this situation? Would you expect
such a result under Šidák’s independence assumption?

Unless there are good reasons to believe that individual tests are indeed independent from each other, more
conservative corrections should be applied. A simple option is the Bonferroni correction

αB = α/n

In practice, αB ≈ 0.238% is only slightly smaller than αS . The R function p.adjust implements more
sophisticated stepwise procedures which take the actual p-value computed by each test into account. For
pairwise t-tests, there is a pre-defined convenience function:

pairwise.t.test(LC$pre, LC$class) # compare pre-test scores by school)

##
## Pairwise comparisons using t tests with pooled SD
##
## data: LC$pre and LC$class
##
## A B C D E F
## B 0.00386 - - - - -
## C 3.4e-10 0.00012 - - - -
## D 0.91687 0.00020 4.3e-11 - - -
## E 0.68078 0.40587 4.1e-07 0.10041 - -
## F 0.01627 1.00000 4.8e-05 0.00091 0.68078 -
## G 1.00000 0.04740 8.9e-09 0.41746 1.00000 0.13106
##
## P value adjustment method: holm

Q: Which schools can be considered to be significantly different based on this result?

Analysis of variance

A second option is to avoid multiple comparisons altogether and carry out only a single test for the null
hypothesis

H0 : µ1 = µ2 = . . . = µ7

Q: What exactly does this null hypothesis entail? What can you conclude from a significant
rejection?

Such a null hypothesis of multiple equality can be tested with a generalization of Student’s t-test known
as analysis of variance (ANOVA). Note that the R function for ANOVA is called aov rather than anova
(which has a related, but different purpose). The aov function supports the convenient “formula” interface:
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res <- aov(pre ~ class, data=LC)
summary(res) # need summary() to compute p-value

## Df Sum Sq Mean Sq F value Pr(>F)
## class 6 21281 3547 15.26 3.64e-12 ***
## Residuals 95 22088 233
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You should be able to spot the highly significant p-value in this output. The main problem of ANOVA is that
it doesn’t show us where the differences lie if H0 has been rejected. For this purpose, a series of post-hoc
tests have to be applied, e.g. Tukey’s procedure of honest significant differences (HSD):

print(TukeyHSD(res), digits=3)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = pre ~ class, data = LC)
##
## $class
## diff lwr upr p adj
## B-A -19.57 -35.256 -3.88 0.005
## C-A -47.57 -66.319 -28.81 0.000
## D-A 7.53 -11.219 26.29 0.889
## E-A -9.05 -26.122 8.02 0.684
## F-A -17.60 -33.659 -1.54 0.022
## G-A -4.33 -21.106 12.44 0.987
## C-B -28.00 -45.790 -10.21 0.000
## D-B 27.10 9.310 44.89 0.000
## E-B 10.51 -5.492 26.52 0.435
## F-B 1.97 -12.957 16.89 1.000
## G-B 15.23 -0.456 30.92 0.063
## D-C 55.10 34.558 75.64 0.000
## E-C 38.51 19.496 57.53 0.000
## F-C 29.97 11.850 48.08 0.000
## G-C 43.23 24.481 61.99 0.000
## E-D -16.59 -35.604 2.43 0.130
## F-D -25.13 -43.250 -7.02 0.001
## G-D -11.87 -30.619 6.89 0.481
## F-E -8.55 -24.916 7.82 0.700
## G-E 4.72 -12.351 21.79 0.981
## G-F 13.27 -2.792 29.33 0.175

The HSD comparisons can also be visualized with a pre-defined plot method.

plot(TukeyHSD(res), las=1)

5



−60 −40 −20 0 20 40 60 80

G−F
G−E
F−E
G−D
F−D
E−D
G−C
F−C
E−C
D−C
G−B
F−B
E−B
D−B
C−B
G−A
F−A
E−A
D−A
C−A
B−A

95% family−wise confidence level

Differences in mean levels of class

Q: Compare the HSD results to the output of pairwise.t.test above. Do the two procedures
agree on which comparisons should be considered significant? Which approach seems more usefult
to you?

When carrying ouy multiple comparisons, it is always a good idea to visualize the distributions in the observed
samples with a side-by-side boxplot first, so it’s easier to make sense of positive and negative effect sizes.
You should also use the boxplots to check for individual outliers – e.g. a student who didn’t finish his test –
which might distort your results.

boxplot(pre ~ class, data=LC, ylim=c(0, 100))
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Comparisons between dependent samples

Our main interest is to find out whether the language course has been effective, i.e. whether there is a
significant improvement of test results from the pre-test to the post-test. One might be tempted to simply
apply Student’s t-test to the pre and post scores:

t.test(LC$post, LC$pre) # THIS IS WRONG!

##
## Welch Two Sample t-test
##
## data: LC$post and LC$pre
## t = 1.1099, df = 201.1, p-value = 0.2684
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.421338 8.656632
## sample estimates:
## mean of x mean of y
## 57.63725 54.51961

Q: What is wrong with this approach? Can you explain why the test doesn’t find a significant
difference even though average scores in the post-test (57.6 points) are more than 3 points higher
than in the pre-test (54.5 points)?

Comparing two dependent samples

The two-sample t-test assumes two independent samples from different populations, but here we have a single
sample of 102 students with two “measurements” for each student. Our incorrect application of the t-test
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takes the large variability of test scores betweeen schools and individual students into account, concluding
that the observed difference can easily be explained by the random selection of students from the pre-test
and post-test groups. In fact, however, a large part of the variability is due to the individual language skills
of students. Most of the students improve between pre- and post-test, giving strong evidence for a positive
effect of the course. This situation can be visualized with a scatterplot, where each point corresponds to a
single student. Any student above the blue diagonal has achieved a personal improvement in the post-test.

plot(LC$pre, LC$post, pch=20,
xlim=c(0, 100), ylim=c(0, 100), xlab="pre-test", ylab="post-test")

abline(0, 1, col="blue")
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The plot above suggests that it is more meaningful to look at the differences between pre-test score xi and
post-test score yi for each student i rather than comparing the xi and yi as independent samples:

di = yi − xi

We can now simply apply a one-sample t-test for H0 : µ = 0, i.e. that there is no change between pre- and
post-test on average. This procedure is known as a paired t-test.

t.test(LC$post, LC$pre, paired=TRUE)

##
## Paired t-test
##
## data: LC$post and LC$pre
## t = 4.524, df = 101, p-value = 1.659e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.750575 4.484719
## sample estimates:
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## mean of the differences
## 3.117647

The paired t-test yields a highly significant p-value p ≈ .000017∗∗∗. The confidence interval 1.75 ≤ µ ≤ 4.48
shows that students improve by at least 1.75 points on average.

An interesting follow-up question would be whether the course was particularly effective in some of the schools
or for certain groups of students. A boxplot of the differences di, grouped by school, gives a first indication:

boxplot((post - pre) ~ class, data=LC, ylab="improvement in post-test")
abline(h=0, col="blue")
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Q: Can you work out whether the differences visible in the boxplot above are significant? Which
test do you need for this purpose, and what are the data for the test?
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